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Abstract.
The set of all orientations of a planar graph with prescribed outdegrees carries the structure of a

distributive lattice. This general theorem is proven in the first part of the paper. In the second part
the theorem is applied to show that interesting combinatorial sets related to a planar graph have lattice
structure: Eulerian orientations, spanning trees and Schnyder woods. For the Schnyder wood application
some additional theory has to be developed. In particular it is shown that a Schnyder wood for a planar
graph induces a Schnyder wood for the dual.

1 Introduction

This work originated in the study of rigid embeddings of planar graphs and the connec-
tions with Schnyder woods. These connections were discovered by Miller [9] and further
investigated in [3]. The set of Schnyder woods of a planar triangulation has the structure
of a distributive lattice. This was independently shown by Brehm [1] and Mendez [10].
My original objective was to generalize this and prove that the set of Schnyder woods
of a 3-connected planar graph also has a distributive lattice structure. The theory de-
veloped to this aim turned out to work in a more general situation. In the first half of
this paper we present a theory of α-orientations of a planar graph and show that they
form a distributive lattice. As noted in [4] this result was already obtained in the thesis
of Mendez [10]. Another source for related results is a paper of Propp [13] where he
describes lattice structures in the dual setting. The cover relations in Propp’s lattices
are certain pushing-down operations. These operations were introduced by Mosesian and
further studied by Pretzel [11] as reorientations of diagrams of ordered sets.

The second part of the paper deals with special instances of the general result. In
particular we find lattice structures on the following combinatorial sets related to a planar
graph: Eulerian orientations, spanning trees and Schnyder woods. While the application
to Eulerian orientations is rather obvious already the application of spanning trees requires
some ideas. To connect spanning trees to orientations we introduce the completion of a
plane graph which can be thought of as superposition of the primal and the dual which
is planarized by introducing a new edge-vertex at every crossing pair of a primal edge
with its dual edge. The lattice structure on spanning trees of a planar graph has been
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discovered in the context of knot theory by Gilmer and Litherland [5] and by Propp [13]
as an example of his lattice structures. A closely related family of examples concerns
lattices on matchings and more generally f -factors of plane bipartite graphs.

To show that the Schnyder woods of a 3-connected plane graph have a distributive
lattice structure some additional theory has to be developed. We prove that a Schnyder
wood for a planar graph induces a Schnyder wood for the dual. A primal dual pair of
Schnyder woods can be embedded on a completion of the plane graph, i.e., on a super-
position of the primal and the dual as described above. In the next step it is shown that
the orientation of the completion alone allows to recover the Schnyder wood. As in the
case of spanning trees the lattice structure comes from orientations of the completion.

2 Lattices of Fixed Degree Orientations

A plane graph is a planar graph G = (V, E) together with a fixed planar embedding.
In particular there is a designated outer (unbounded) face F ∗ of G. Given a mapping
α : V → IN an orientation X of the edges of G is called an α-orientation if α records
the out-degrees of all vertices, i.e.,outdegX(v) = α(v) for all v ∈ V . We call α feasible if
α-orientation of G exists. The main result of this section is the following theorem.

Theorem 1. Let G be a plane graph and α : V → IN be feasible. The set of α-orientations
of G carries an order-relation which is a distributive lattice.

2.1 Reorientations and essential cycles

Let X be an α-orientation of G. Given a directed cycle C in X we let XC be the
orientation obtained from X by reversing all edges of C. Since the out-degree of a vertex
is unaffected by the reversal of C the orientation XC is another α-orientation of G. The
plane embedding of G allows us to classify a directed simple cycle as clockwise (cw-cycle)
if the interior, Int(C), is to the right of C or as counterclockwise (ccw-cycle) if Int(C) is
to the left of C. If C is a ccw-cycle of X then we say that XC is left of X and X is right
of XC . Brief remark in passing: The transitive closure of the ‘left of’ relation is the order
relation which makes the set of α-orientations of G a distributive lattice.

Let X and Y be α-orientations of G and let D be the set of edges with oppositional
orientations in X and Y . Every vertex is incident to an even number of edges in D,
hence, the subgraph with edge set D is Eulerian. If we impose the orientation of X on the
edges of D the subgraph is a directed Eulerian graph. Consequently, the edge set D can
be decomposed into simple cycles C1, .., Ck which are directed cycles of X. We restate a
consequence of this observation as a lemma.

Lemma 1. If X 6= Y are α-orientations of G then for every edge e which is oppositionally
directed in X and Y there is a simple cycle C with e ∈ C and C is oppositionally directed
in X and Y .
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An edge of G is α-rigid if it has the same direction in every α-orientation. Let R ⊆ E
be the set of α-rigid edges. Since directed cycles in X can be reversed, rigid edges never
belong to directed cycles.

With A ⊂ V we consider two sets of edges, the set E[A] of edges with two ends in A,
i.e., edges induced by A, and the set ECut[A] of edges in the cut (A, A), i.e., the set of
edges connecting a vertex on A to a vertex in the complement A = V \ A.

Given A and a α-orientation X, then exactly
∑

v∈A α(v) edges have their tail in A.
The number of edges incident to vertices in A is |E[A]| + |ECut[A]|. The demand of A in
X is the number of edges pointing from A into A.

Lemma 2. For a set A ⊂ V the demand is

demα(A) = |E[A]| + |ECut[A]| −
∑
v∈A

α(v)

In particular demα(A) only depends on α and not on X.

By looking at demands we can identify certain sets of rigid edges. If for example
demα(A) = 0, then all the edges in ECut[A] point away from A in every α-orientation and,
hence, ECut[A] ⊆ R in this case. Symmetrically, if demα(A) = |ECut[A]|, then all the edges
in ECut[A] point towards A and again ECut[A] ⊆ R.

Digression: Existence of α-orientations

For any graph G = (V, E) and α : V → IN there are two obvious necessary conditions on
the existence of an α-orientation:

1. demα(V ) = 0, i.e,
∑

v α(v) = |E|,
2. 0 ≤ demα(A) ≤ |ECut[A]| for all A ⊆ V .

It is less obvious that these two conditions are already sufficient for the existence of an
α-orientation. This can be shown by a simple induction on the number of edges. If there
is an A ⊂ V with demα(A) = 0 then all edges in ECut[A] have to point away from A.
Remove these edges, update α accordingly and apply induction to the components. If
demα(A) > 0 for all A ⊂ V then orient some edge arbitrarily. Remove this edge, update
α accordingly and apply induction.

This simple proof has the disadvantage that it does not yield a polynomial algorithm
to check the conditions and construct an α-orientation if the conditions are fulfilled. These
requirements are matched by the following reduction to a flow-problem.

Start with an arbitrary orientation Z and let β(v) = indegZ(v). If β(v) = α(v) for all
v then reversing the directions of all edges in Z yields an α-orientation. Otherwise we ask
for a flow f subject to capacity constraints 0 ≤ f(e) ≤ 1 for all directed edges e ∈ Z and
vertex constraints ∑

e∈outZ (v)

f(e) −
∑

e∈inZ(v)

f(e) = α(v) − β(v).
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If such a flow exists, then there also exists an integral flow, i.e., f(e) ∈ {0, 1} for all e.
Reversing the directions of those edges in Z which have f(e) = 0 yields an α-orientation.
The existence of the flow is equivalent to the cut-conditions: For A ⊂ V consider the
amount of flow that has to go from A to A. This amount is

∑
v∈A α(v)−∑

v∈A β(v), The
flow leaving A is constrained by the capacity of the cut, i.e., number of edges oriented
from A to A in Z, this number is |E[A]|+ |ECut[A]| −∑

v∈A β(v). Thus the cut-condition∑
v∈A α(v) − ∑

v∈A β(v) ≤ |E[A]| + |ECut[A]| − ∑
v∈A β(v) is equivalent to 0 ≤ demα(A).

This ends the digression and we return to the study of α-orientations of a planar graph
G. The set of vertices in the interior of a simple cycle C in G is denoted IC . Of special
interest to us will be cycles C with the property that ECut[IC ] ⊆ R. In that case we
say that the interior cut of C is rigid. This means that the orientation of all the edges
connecting C to an interior vertex is fixed throughout all α-orientations. Note that the
interior cut of a face cycle of G is always rigid because ECut[IC ] = ∅ in this case.

Definition 1. A cycle C of G is an essential cycle if

• C is simple and chord-free,

• the interior cut of C is rigid, i.e., ECut[IC ] ⊆ R,

• there exists an α-orientation X such that C is a directed cycle in X.

With lemmas 3–6 we show that with reorientations of essential cycles we can commute
between any two α-orientations. In fact reorientations of essential cycles represent the
cover relations in the ‘left of’ order on α-orientations.

A cycle C has a chordal path in X if there is a directed path consisting of edges interior
to C whose first and last vertex are vertices of C. We allow that the two end vertices of
a chordal path coincide.

Lemma 3. If C has no chordal path in some α-orientation X, then the interior cut of C
is rigid.

Proof. Assume that C has no chordal path in some α-orientation X. Let A be the set of
vertices which are reachable in X by a directed path starting from C with an edge pointing
into the interior of C. The definition of A and the assumption that C has no chordal path
in X imply that A ⊆ IC and all edges in the cut (A, A) are directed toward A in X, i.e.,
demα(A) = |ECut[A]|. Let B = IC \A, the definition of A and demα(A) = |ECut[A]| imply
that demα(B) = 0. This implies that the interior cut of C is rigid.

If C is a directed cycle the implication from the previous lemma is in fact an equivalence
(Lemma 4). This provides us with a nice criterion for deciding whether a directed cycle
is essential.

Lemma 4. Let C be a directed cycle in an α-orientation X. The interior cut of C is
rigid iff C has no chordal path in X.

Proof. A chordal path P of C in X can be extended to a cycle C ′ by adding some edges of
the directed cycle C. Reversing C ′ in X yields another α-orientation X ′. The orientation
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of the first edge e of P is different in X and X ′. The edge e belongs to the interior cut of
C, hence, the interior cut of C is not rigid.

Lemma 5. If C and C ′ are essential cycles, then either the interior regions of the cycles
are disjoint or one of the interior regions is contained in the other and the two cycles are
vertex disjoint. See Figure 1 for an illustration.

Figure 1: Interiors of essential cycles are disjoint or contained with disjoint borders.

Proof. In all other cases an edge e of one of the cycles, say C ′, would connect a vertex
on C to an interior vertex of C. Since C is essential and e belongs to the interior cut
of C edge e is rigid. However, e belongs to C ′ which is essential, therefore, there is an
α-orientation X such that C ′ is directed in X. Let XC′

be the orientation obtained from
X by reversing C ′. The two orientations show that e is not rigid; contradiction.

Corollary 1. Let e be and edge and F an incident face in G, then there exists at most
one essential cycle C with e ∈ C and F ⊆ Int(C).

Lemma 6. If C is a cycle which is directed in X, then XC can also be obtained by a
sequence of reversals of essential cycles.

Proof. We show that as long as C is not essential we find cycles C1 and C2 such that
XC = (XC1)C2 and both Ci are less complex than C so that we can apply induction.

If C is not simple we cut C at a vertex which is visited multiply to obtain C1 and C2.
If C has a chord e. Suppose that e is oriented as e = (v, u) in X. Decompose C into

a path P1 from u to v and a path P2 from v to u. Let C1 be P1 together with e. After
reversing C1 the reoriented edge e together with P2 forms a cycle C2 which is admissible
for reorientation. Clearly XC = (XC1)C2 .

If C is simple, chord-free and directed in X, but not essential, then the interior cut
of C is not rigid. Lemma 3 implies that C has a chordal path P in X. Let u and v be
the end-vertices of P on C and let P be directed from v to u. As in the previous case
decompose C into a path P1 and P2. Again C1 = P1 ∪ P and C2 = P2 ∪ P are two less
complex cycles with XC = (XC1)C2 .
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Let C be a simple cycle which is directed in X as a ccw-cycle. If C1 and C2 are
constructed as in the proof of the lemma then C1 is is a ccw-cycle in X and C2 is a
ccw-cycle in XC1. This suggests a stronger statement:

Lemma 7. If C is a simple directed ccw-cycle in X, then XC can also be obtained by
a sequence of reversals of essential cycles from ccw to cw. Moreover, the set of essential
cycles involved in such a sequence is the unique minimal set such that the interior regions
of the essential cycles cover the interior region of C.

Proof. The proof of Lemma 6 provides a set of essential cycles such that all the reorien-
tations are from ccw to cw. Furthermore the interior regions of these essential cycles are
disjoint and cover the interior region of C.

It remains to prove the uniqueness. An edge on the boundary of the union of a set
of essential cycles (viewed as topological discs) is only contained in one of the cycles
(Corollary 1) and will therefore change its orientation in the sequence of reorientations.
Consequently, this boundary is just C and all the essential cycles involved are contained
in the interior of C.

A similar consideration shows that the interiors are disjoint. If the interiors of two of
the cycles are not disjoint, then (Lemma 5) one of them is contained in the other, call the
larger one C ′. For the set of all essential cycles contained in C ′ we again observe: An edge
on the boundary of the union of this set is only contained in one of the cycles and will
change its orientation in the sequence of reorientations. Therefore such an edge interior
to C ′ has to belong to C which is impossible.

2.2 Interlaced flips in sequences of flips

A flip is the reorientation of an essential cycle from ccw to cw. A flop is the converse of
a flip, i.e., the reorientation of an essential cycle from cw to ccw.

A flip sequence on X is a sequence (C1, .., Ck) of essential cycles such that C1 is flipable
in X, i.e., C1 is a ccw-cycle of X, and Ci is flipable in XC1...Ci−1 for i = 2, .., k.

Recall from Corollary 1 that an edge e is contained in at most two essential cycles. If
we think of e as directed, then there can be an essential cycle C l(e) left of e and another
essential cycle Cr(e) right of e.

Lemma 8. If (C1, .., Ck) is a flip sequence on X then for every edge e the essential cycles
C l(e) and Cr(e) alternate in the sequence, i.e., if i1 < i2 with Ci1 = Ci2 = C l(e) then there
is a j with i1 < j < i2 and Cj = Cr(e). The same holds with left and right exchanged.

Proof. Let F be the face with e ∈ F and F ⊂ Int(C l(e)). If F is left of e in the current
orientation then C l(e) may be flipable but Cr(e) is clearly not a ccw-cycle and, hence, not
flipable.

Lemma 9. For every edge e there is a te ∈ IN such that for all α-orientations X a flip
sequence on X implies at most te reorientations of e.
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Proof. If e is not contained in an essential cycle, then e is rigid and t = 0. Let C1 be an
essential cycle containing e, choose a point x ∈ Int(C1) and consider a horizontal ray `
from x to the right. Ray ` will leave Int(C1) at an edge e1, let C2 be the essential cycle
on the other side of e1. Further right ` will leave Int(C2) at an edge e2, let C3 be the
essential cycle on the other side of e2. Repeat the construction until ` leaves Int(Cs) at es

and this edge has no essential cycle on the other side. Such an s exists since ` emanates
into the unbounded face of G which is not contained in the interior of an essential cycle.

Now we apply Lemma 8 backwards for every pair C i, Ci−1. Since Cs is flipped at most
once in any flip-sequence we find that Cs−1 is flipped at most twice, Cs−2 is flipped at
most three times and so on. Hence, C1 is flipped at most s times. With Lemma 8 this
bound implies that edge e is reoriented at most 2s + 1 times in any sequence of flips.

Lemma 10. The length of any flip sequence is bounded by some t ∈ IN and there is a
unique α-orientation Xmin with the property that all cycles in Xmin are cw-cycles.

Proof. The number of essential cycles of G is finite. It can e.g. be bounded by the number
of faces of G. For each essential cycle there is a finite bound for the number of times it
can be flipped in a flip sequence Lemma 9. This makes a finite bound on the length of
any flip-sequence.

Let X be an arbitrary α-orientation and consider a maximal sequence of flips starting
at X. Let Y be the α-orientation reached through this sequence of flips. If Y would contain
a ccw-cycle then by Lemma 7 there is an essential ccw-cycle and hence a possible flip. This
is a contradiction to the maximality of the sequence, hence, Y is an α-orientation without
ccw-cycles. By Lemma 1 there can be only one α-orientation without ccw-cycles, denoted
Xmin. In particular a maximal sequence of flips starting in an arbitrary α-orientation X
always leads to Xmin.

From this lemma it follows that the ‘left of’ relation is acyclic. We now adopt a more
order theoretic notation and write Y ≺ X if Y can be obtained by a sequence of flips
starting at X. We summarize our knowledge about this relation.

Corollary 2. The relation ≺ is an order relation with a unique minimal element Xmin.

2.3 Flip-sequences and potentials

With the next series of lemmas we investigate properties of sequences of flips that lead
from X to Xmin. It will be shown that any two such sequences contain the same essential
cycles.

Lemma 11. Suppose Y ≺ X and let C be an essential cycle. Every sequence S =
(C1, . . . , Ck) of flips that transforms X into Y contains the same number of flips at C.

Proof. We recycle the proof technique used in Lemma 9. Let C = C1, choose a point
x ∈ Int(C1) and consider a horizontal ray ` from x to the right. Let C1, . . . , Cs be the
sequence of essential cycles defined by `, that is, Ci and Ci+1 share an edge ei and es ∈ Cs

has no essential cycle on its other side.
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For the essential cycle Ci let zS(Ci) = |{j : Cj = Ci}| be the number of occurrences
of Ci in the sequence S. Since Ci and Ci+1 share an edge it follows from Lemma 8 that
|zS(Ci) − zS(Ci+1)| ≤ 1 and zS(Cs) ≤ 1.

Let D be the set of edges with different orientations in X and Y . If ei 6∈ D then ei is
reoriented an even number of times by S. There are only two essential cycles available to
reorient ei (Corollary 1) these cycles are Ci and Ci+1. Since |zS(Ci) − zS(Ci+1)| is even
and at most one it follows that zS(Ci) = zS(Ci+1) for all ei 6∈ D.

An edge ei ∈ D is reoriented an odd number of times. There remain two cases either
zS(Ci) = zS(Ci+1)+1 or zS(Ci) = zS(Ci+1)−1. The decision which case applies depends
on the orientation of ei in X. If Ci is left of the directed edge ei in X then Ci is ccw and
Ci+1 is cw in X. This implies that the first flip of C i precedes the first flip of Ci+1 in
every flip sequence that starts with X. Therefore, zS(Ci) = zS(Ci+1) + 1 in this case. If,
however, Ci+1 is left of the directed edge ei in X then zS(Ci) = zS(Ci+1) − 1.

These rules show that X and Y uniquely determine zS(C1) = zS(C). A possible
way to express the value is zS(C) =

∣∣{ei : ei ∈ D and in X edge ei is crossing ` from
below}∣∣ − ∣∣{ei : ei ∈ D and in X edge ei is crossing ` from above}∣∣.

For a given α let E = Eα be the set of all essential cycles. Given an α-orientation X
there is a flip sequence S from X to Xmin. For C ∈ E let zX(C) be the number of times
C is flipped in a flip sequence S. The previous lemma shows that this independent of S
and hence a well defined mapping zX : E → IN. Moreover, if X 6= Y then zX 6= zY .

Definition 2. An α-potential for G is a mapping ℘ : Eα → IN such that

• |℘(C) − ℘(C ′)| ≤ 1, if C and C ′ share an edge e.

• ℘(C) ≤ 1, if there is an edge e ∈ C such that C is the only essential cycle to which e
belongs.

• If C l(e) and Cr(e) are the essential cycles left and right of e in Xmin then ℘(C l(e)) ≤
℘(Cr(e)).

Lemma 12. The mapping zX : Eα → IN associated to an α-orientation X is an α-
potential.

Proof. The first two properties are immediate from the alternation property shown in
Lemma 8. For the third property consider a flip-sequence S from X to Xmin. The
orientation of e in Xmin implies that the last flip affecting e is a flip of Cr(e). With
Lemma 8 this implies ℘(C l(e)) ≤ ℘(Cr(e)).

Lemma 13. For every α-potential ℘ : Eα → IN there is an α-orientation X with zX = ℘.

Proof. We define an orientation X℘ of the edges of G as follows.

• If e is not contained in an essential cycle then X℘(e) = Xmin(e), i.e., the orientation
of e in X equals the orientation of e in Xmin (these are the rigid edges).

• If e is contained in one essential cycle Ce, then X℘(e) = Xmin(e) if ℘(Ce) = 0 and
X℘(e) 6= Xmin(e) if ℘(Ce) = 1.
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• If e is contained in two essential cycles C l(e) which Cr(e) are left and right of e in
Xmin, then X℘(e) = Xmin(e) if ℘(C l(e)) = ℘(Cr(e)) and X℘(e) 6= Xmin(e) if ℘(C l(e)) 6=
℘(Cr(e)).

It remains to show that X℘ is indeed an α-orientation. This is proven by induction on
℘(E) =

∑
C∈E ℘(C).

If ℘(E) = 0 then X℘(e) = Xmin(e) for all e and X℘ is an α-orientation.
If ℘(E) > 0 let m be the maximum value taken by ℘. Let Rm be the union of the

interiors Int(C) of all the essential cycles C with ℘(C) = m. Let ∂Rm be the boundary of
Rm. The third property of a potential implies that in Xmin every edge e ∈ ∂Rm has Rm

on its right side. Therefore, ∂Rm decomposes into simple cycles which are cw in Xmin and
ccw in X℘. Let B be one of these cycles in ∂Rm. By Lemma 7 there is a unique subset
EB of E such that the flip of C is equivalent to flipping each member of EB.

Define ℘∗ : E → IN by ℘∗(C) = ℘(C) − 1 if C ∈ EB and ℘∗(C) = ℘(C) if C ∈ E \ EB.
We claim that ℘∗ is a potential. To prove this we have to check the properties of the
definition for all edges. For edges that are not contained in B these properties for ℘∗

immediately follow from the properties for ℘. For e ∈ B the definition of B implies
℘(C l(e)) = ℘(Cr(e))− 1. Since C l(e) ∈ EB and Cr(e) 6∈ EB this shows ℘∗(C l(e)) = ℘∗(Cr(e)).

By induction the orientation X℘∗ corresponding to the potential ℘∗ by the above rules
is an α-orientation. The orientations X℘∗ and X℘ only differ on the edges of the directed
cycle B which is cw in X℘∗ and ccw in X℘. Therefore, the outdegree of a vertex in X℘

equals its outdegree in X℘∗ . This proves that X℘ is an α-orientation. Along the same
inductive line it also follows that zX℘ = ℘.

With Lemma 12 and Lemma 13 we have established a bijection between α-orientations
and α-potentials. The following lemma completes the proof of Theorem 1.

Lemma 14. The set of all α-potentials ℘ : E → IN with the dominance order ℘ ≺ ℘′ if
℘(C) ≤ ℘′(C) for all C ∈ E is a distributive lattice. Join ℘1 ∨℘2 and meet ℘1 ∧℘2 of two
potentials ℘1 and ℘2 are given by (℘1 ∨℘2)(C) = max{℘1(C), ℘2(C)} and (℘1 ∧℘2)(C) =
min{℘1(C), ℘2(C)} for all C ∈ E .

Proof. The fact that max and min fulfill the distributive laws is a folklore result. There-
fore, all that has to be shown is that ℘1 ∨ ℘2 and ℘1 ∧ ℘2 are potentials. Consider an
edge e and and the essential cycles C l(e) and Cr(e). From ℘i(C

l(e)) ≤ ℘i(C
r(e)) for i = 1, 2,

it follows that (℘1 ∨ ℘2)(C
l(e)) ≤ (℘1 ∨ ℘2)(C

r(e)). If (℘1 ∨ ℘2)(C
r(e)) = ℘i(C

r(e)) then
(℘1 ∨℘2)(C

l(e)) ≥ ℘i(C
l(e)) ≥ ℘i(C

r(e))− 1 hence |(℘1 ∨℘2)(C
r(e))− (℘1 ∨℘2)(C

l(e))| ≤ 1.
This shows that the join ℘1 ∨ ℘2 is a potential. The argument for the meet is similar.

Corollary 3. Let G be a plane graph and α : V → IN be feasible. The following sets carry
isomorphic distributive lattices

• The set of α-orientations of G.

• The set of α-potentials ℘ : Eα → IN.

• The set of Eulerian subdigraphs of a fixed α-orientation X.
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3 Applications

Distributive lattices are beautiful and well understood structures and it is always nice to
identify a distributive lattice on a finite set C of combinatorial objects. Such a lattice
structure may then be exploited in theoretical and computational problems concerning C.

Usually the cover relation in the lattice LC corresponds to some minor modification
(move) in the combinatorial object. In our example the moves are reorientations of es-
sential cycles (flips and flops). In most cases it is easy to find all legal moves that can be
applied to a given object from C. In our example finding the applicable moves corresponds
to finding the directed essential cycles of an α-orientation. This task is easy in the sense
that it can be accomplished in time polynomial in the size of the plane graph G. By
the fundamental theorem of finite distributive lattices: there is a finite partially ordered
set PC such that the elements of LC, i.e., the objects in C, correspond to the order ideals
(down-sets) of PC. The moves operating on the objects in C can be viewed as elements
of PC. If C is the set of α-orientations the elements of PC thus correspond to essential
cycles, however, a single essential cycle may correspond to several elements of PC, Figure 2
illustrates this effect. The elements of PC can be shown to be in bijection to the flips on a
maximal chain from Xmax to Xmin in LC. Consequently, in the case of α-orientations of G
the order PC has size polynomial in the size of G and can be computed in time polynomial
in the size of G.

We explicitly mention three applications of a distributive lattice structure on a com-
binatorial set C before looking at some specific instances of Theorem 1.

• Any two objects in C can be transformed into each other by a sequence of moves.
Proof: Every element of LC can be transformed into the unique minimum of LC by
a sequence (chain) of moves. Reversing the moves in one of the two chains gives a
transformation sequence for a pair of objects.

• All elements of C can be generated/enumerated with polynomial time complexity per
object. The idea is as follows: Assign different priorities to the elements of PC. Use
these priorities in a tree search (e.g., depth-first-search) on LC starting in the minimal
element. An object is output/count only when visited for the first time, i.e., with the
lexicographic minimal sequence of moves that generate it.

• To generate an element of C from the uniform distribution a Markov chain combined
with the coupling from the past method can be used. This very elegant approach
gives a process that stops itself in the perfect uniform distribution. Although this
stop can be observed to happen quite fast in many processes of the described kind,
only few of these processes have been analyzed satisfactorily. For more on this subject
we recommend the work of Propp and Wilson [12] and [14].

3.1 Eulerian orientations

Let G be a plane graph, such that every vertex v has even degree d(v). An Eulerian
orientation of G is an orientation with indeg(v) = outdeg(v) for every vertex v. Hence,
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Eulerian orientations are just the α-orientations with α(v) = d(v)
2

for all v ∈ V . By
Theorem 1 the Eulerian orientations of a planar graph form a distributive lattice.

To understand and work with the distributive lattice of Eulerian orientations of a
plane graph it is useful to know the set of essential cycles. At first observe that there
are no rigid edges, this follows from the fact that reversing all edges of an Eulerian
orientation yields again an Eulerian orientation. This implies that all the essential cycles
have to be face-cycles of bounded faces. To show that every bounded cycle is essential
we note that Eulerian orientations can be constructed by iteratively orienting a cycle and
removing it from the graph. This procedure can start with any face-cycle and each of
its two orientations. This shows that for every face-cycle there are Eulerian orientations
that difer just in the orientation of that face-cycle, i.e., face-cycles of bounded faces are
essential.

2′ 3′ 4′

3 42

5 6 7 1′

1

1′′

2

4

7

56

3
1

Figure 2: Left: A graph G with its minimal Eulerian orientation and a labeling of the
faces. Right: The ordered set P such that the set of ideals of P is the lattice of Eulerian
orientations of G.

3.2 The primal dual completion of a plane graph

For later applications we need the primal dual completion of a plane graph G. With G
there is the dual graph G∗, the primal dual completion G̃ of G is constructed as follows:
Superimpose plane drawings of G and G∗ such that only the corresponding primal dual
pairs of edges cross. The completion G̃ is obtained by adding a new vertex at each of these
crossings. The construction is illustrated in Figure 3. If G has n vertices, m edges and f
faces, then the corresponding numbers ñ, m̃ and f̃ for G̃ can be expressed as follows:

• ñ = n + m + f . We denote the vertices of G̃ originating in vertices of G, G∗ and
crossings of edges as primal-vertices, dual-vertices and edge-vertices.

• m̃ = 4m.

• f̃ = 2m: This follows since every face of G̃ is a quadrangle with a primal- and a
dual-vertex at opposite corners and edge-vertices at the remaining corners. Thus,
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G G∗ G̃

Figure 3: A plane graph G with its dual G∗ and completion G̃.

there is a bijection between angles of G and faces of G̃. The number of angles of G is∑
v d(v) = 2m.

There is a subtlety with the notion of the dual and, hence, of the completion when the
connectedness of G is too small. If G has a bridge then G̃ has multiple edges. In general,
however, the completion is at least as well behaved as G:

• If G is connected and bridgeless =⇒ G̃ is 2-connected.

• If G is 2-connected =⇒ G̃ is 3-connected.

Completions of planar graphs have a nice characterization.

Proposition 1. Let H be 2-connected plane graph, H is the completion of plane graph G
iff the following three conditions hold:

1. All the faces of H are quadrangles, in particular H is bipartite.

2. In one of the two color classes of H all vertices have degree four.

Proof. (sketch) It is immediate that the completion of a planar graph has the properties
listed. For the converse first identify the edge-vertices as the color class of H consisting
of degree four vertices. The other vertices are split into primal and dual vertices. De-
fine two vertices as equivalent if they are opposite neighbours of an edge-vertex. If two
vertices of a four-face fall into the same class, then there is a chain of ’opposite’ vertices
connecting them. Arguing with such a chain enclosing a minimum number of faces leads
to a contradiction. Finally, show that the graph on one of the classes of vertices has H
as completion.

3.3 Spanning trees

We show that there is a bijection between the spanning trees of a planar graph G = (V, E)

and the α-orientations of the completion G̃ of G for a certain α. Together with Theorem 1
this implies:
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Theorem 2. There is a distributive lattice of orientations of G̃ which induces a distribu-
tive lattice on the spanning trees of a planar graph G.

After having obtained this result we found that it was already known. Gilmer and
Litherland [5] arrive at such a lattice on spanning trees in the context of knot theory.
They also point out the equivalence to Kaufmann’s Clock Theorem. Propp [13] describes
a large class of distributive lattices related to orientations of graphs. If G is planar then
the lattice of α-orientations of G is isomorphic to a Propp lattice of the dual G∗. Propp
discovered lattices on spanning trees as a special case of his theory.

Let T ⊆ E be the set of edges of a spanning tree of G. If T ∗ is the set of dual edges
of non-tree edges (edges in E \ T ), then T ∗ is the set of edges of a spanning tree of the
dual graph G∗. This is the natural bijection between the spanning trees of G and G∗.

With a spanning tree T of G we associate an orientation of G̃. First we select two
special root vertices for G̃, a primal-vertex vr and a dual-vertex v∗

r . Now T and the
corresponding dual tree T ∗ are thought of as directed trees in which every edge points
towards the primal- respectively dual-root. The direction of edge e = (u, w) ∈ T ∪ T ∗

is passed on to the edges (u, ve) and (ve, w) in G̃, where ve is the edge-vertex of G̃

corresponding to edge e. All the remaining edges of G̃ are oriented so that they point away
from their incident edge-vertex. Figure 4 illustrates the construction. The orientation thus

vr

v∗
r

Figure 4: A pair of spanning trees for G and G∗ and the corresponding orientation of the
completion G̃ with roots vr and v∗

r .

obtained is an αT -orientation for the following αT :

• αT (vr) = 0 and αT (v∗
r) = 0, i.e., the roots have outdegree zero.

• αT (ve) = 3 for all edge-vertices ve.

• αT (v) = 1 for all primal- and dual- non-root vertices v.

A pair of root vertices vr and v∗
r is legal if both are incident to some face of G̃.

Proposition 2. The spanning trees of a planar graph G are in bijection to the αT -
orientations of G̃ with a legal pair of root-vertices.
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Proof. We have described an orientation of G̃ corresponding to a spanning tree of G. This
orientation is an αT -orientation and the mapping from spanning trees to αT -orientations
is injective.

Let X be an αT -orientation, from X we obtain a set SX ⊂ E of edges as follows: At
every edge-vertex ve look at the unique incoming edge. Put e into SX iff this incoming
edge emanates from a primal-vertex. Since αT (v) = 1 for all primal-vertices, save the
primal-root, the set SX contains n−1 edges. We claim that SX contains no cycles. Given
the claim it follows that SX is a spanning tree of G. Hence, the mapping from spanning
trees to αT -orientations is surjective and this completes the proof that the mapping is a
bijection.

It remains to verify the claim that SX contains no cycle. Suppose C is a cycle in SX .
Let C̃ be the corresponding cycle in G̃, i.e., for each edge e = (u, w) in C there are two

edges u, ve and ve, w in C̃. We assume that C̃ is a simple cycle and define the interior
Int(C̃) so that the root vertices vr and v∗

r are exterior, this can be done since the pair of
roots is legal and vr 6∈ C.

Let H be the subgraph of G obtained by eliminating all vertices and edges from G
which are in the exterior of C, i.e., H consists of C and together with the part of G
interior to C. Let the length of C be l and suppose that H has p vertices, q + 1 faces and
k edges. Eulers’s formula for H implies that p − k + (q + 1) = 2.

Consider the subgraph H̃ of G̃ obtained by eliminating all vertices and edges from
G which are in the exterior of C̃. Note that H̃ has p primal-vertices, q dual-vertices, k
edge-vertices and that the length of C̃ is 2l. We count the edges of H̃ is two ways: Every
edge-vertex has 4 incident edges in G̃, each of the l edge-vertices on C̃ has exactly one
edge in the exterior of C̃, hence |E(H̃)| = 4k − l. Counting the oriented edges of H̃ at
the vertices where they originate we count 1 for every primal- and dual-vertex (including

the primal-vertices on C̃!) and 3 for every interior edge-vertex, while the l edge-vertices

on C̃ only have outdegree two in H̃ . This makes |E(H̃)| = p + q + 3k − l. Subtracting

the two expressions for |E(H̃)| we obtain p − k + q = 0. This contradiction to the Euler
formula for H completes the proof.

Figure 5 shows the distributive lattice of the spanning trees of a graph with two
different choices of the primal-root. The dual-root for both examples is the dual-vertex
corresponding to the outer face.

When studying the set of spanning trees of a graph we loose nothing with the assump-
tion that the graph is two edge connected, a bridge belongs to every spanning tree anyway.
Let G be a simple planar two edge connected graph. Fix a primal- and a dual-root and
consider the set of αT -orientations of G̃. It is easy to see that the only rigid edges are the
edges incident to one of the roots which are necessarily oriented toward the root. There-
fore, the set of essential cycles for αT is contained in the set of faces of G̃ which have no
root vertex on the boundary. Actually, these two sets coincide. This simple characteriza-
tion of essential cycles helps in understanding the lattice structure on the spanning trees
of G. We illustrate this by explaining the cover relation T ≺ T ′ between two trees: The
two trees only differ in one edge T ′ = T − e + e′ and there is a vertex v 6= vr such that e
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G

Figure 5: A graph and two distributive lattices for its spanning trees.

is the first edge of the v → vr path in T and e′ is the first edge of the v → vr path in T ′.
Moreover, in the clockwise ordering of edges around v edge e′ is the immediate successor
of e and the angle between e and e′ at v belongs to the interior of the unique cycle of
T + e′ (this last condition is based on the choice of v∗

r as the dual-vertex corresponding
to the unbounded face of G). The characterization is illustrated in Figure 6.

e′
e

v v

vrvr

v∗
rv∗

r

T T ′

Figure 6: A typical flop between spanning trees T ≺ T ′ and their duals.

3.4 Matchings and f-factors

Given a function f : V → IN an f -factor of G = (V, E) is a subgraph H of G such that
dH(v) = f(v) for all v ∈ V . A perfect matching is a 1-factor, i.e, an f -factor for f ≡ 1.
Let G be bipartite with bipartization (U, W ). There is a bijection between f -factors of G
and orientations of G with outdeg(u) = f(u) for u ∈ U and indeg(w) = f(w) for w ∈ W .
That is a bijection between f -factors and αf -orientations where αf(u) = f(u) for u ∈ U
and αf(w) = dG(w) − f(w) for w ∈ W . Together with Theorem 1 this implies:

Theorem 3. For a plane bipartite graph G the distributive lattice of αf–orientations of

G̃ induces a distributive lattice on the f -factors of G.

Again, this result was already obtained by Propp [13] as a special case of his theory.
Propp also points out that even in the case of perfect matchings there may exist rigid
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edges, i.e., edges that are in all perfect matching or in none. Therefore, there can be
essential cycles which are not just faces of the graph.

The completion G̃ of a plane graph G is a bipartite graph. Choose a primal-vertex vr

and a dual-vertex v∗
r from G̃ and remove them, let G̃r be the remaining graph. G̃r has

perfect matchings. The perfect matchings of G̃r are in bijection with the spanning trees of
G. A proof can be given by comparing the α-orientations of G̃ corresponding to matchings
and spanning trees. A special case of this bijection is Temperley’s bijection between
spanning trees and matchings of square grids. The general correspondence between trees
and matchings has been exploited in [6]. Another recent source for the above theorem
is [8].

3.5 Schnyder woods

Let G be a plane graph and let a1, a2, a3 be three different vertices in clockwise order
from the outer face of G. The suspension Gσ of G is obtained by adding a half-edge that
reaches into the outer face to each of the three special vertices ai. The closure Gσ

∞ of
a suspension Gσ is obtained by adding a new vertex v∞, this vertex is used as second
endpoint for the three half-edges of Gσ.

Schnyder [15], [16] introduced edge orientations and equivalent angle labelings for
planar triangulations. He used this structures for a remarkable characterization of planar
graphs in terms of order dimension. The incidence order PG of a graph G = (V, E) is the
order on V ∪E with relations v < e iff v ∈ V , e ∈ E and v ∈ e. Schnyder proved: A graph
G is planar ⇐⇒ the dimension of its incidence order is at most 3. Another important
application of Schnyder’s labelings is a proof that every planar n vertex graph admits a
straight line drawing on the (n − 1) × (n − 1) grid.

De Fraysseix and de Mendez [4] prove a bijection between Schnyder labelings of a pla-
nar triangulation G and 3-orientations of Gσ

∞, i.e., α-orientations with α(v) = 3 for every
regular vertex and α(v∞) = 0. Based on the bijection with 3-orientations de Mendez [10]
and Brehm [1] have shown that the set of Schnyder labelings of a planar triangulation G
has the structure of a distributive lattice. This result stimulated the research that lead
to Theorem 1. The proof of the general theorem given in the first part of this paper is
widely based on ideas that are already contained in the cited proofs of the special case.

In [2] the concept of Schnyder labelings was generalized to 3-connected planar graphs.
It was also shown that like the original concept the generalization yields strong appli-
cations in the areas of dimension theory and graph drawing. The following definition
of Schnyder woods is taken from [3] where it is also shown that Schnyder woods and
Schnyder labelings are in bijection.

Let Gσ be the suspension of a 3-connected plane graph. A Schnyder wood rooted at
a1, a2, a3 is an orientation and labeling of the edges of Gσ with the labels 1, 2, 3 (alterna-
tively: red, green, blue) satisfying four rules. On the labels we assume a cyclic structure
so that i + 1 and i − 1 is defined for all i.

(W1) Every edge e is oriented by one or two opposing directions. The directions of edges
are labeled such that if e is bioriented the two directions have distinct labels.
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(W2) The half-edge at ai is directed outwards and labeled i.

(W3) Every vertex v has one outgoing edge in each label. The edges e1, e2, e3 leaving v in
labels 1,2,3 occur in clockwise order. Each edge entering v in label i enters v in the
clockwise sector from ei+1 to ei−1. (See Figure 7).

(W4) There is no interior face whose boundary is a directed cycle in one label.

2
3

32
2

2

1

3
1

Figure 7: Edge orientations and labels at a vertex.

Unlike in the case of planar triangulations, the labeling of edges of a Schnyder wood can
not be recovered from the underlying orientation, Figure 8 shows an example. However,
orientations of an appropriate primal dual completion of a suspended plane graph are in
bijection to Schnyder woods (this will be shown in Proposition 4).
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1
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Figure 8: Two different Schnyder woods with the same underlying orientation.

We first show that Schnyder woods of a suspended plane graph are in bijection with
Schyder woods of a properly defined dual. Figure 9 exemplifies the duality. Actually,
the figure illustrates much more: With the primal and dual graphs and Schnyder woods
it also shows a corresponding orthogonal surface. We include this figure for two rea-
sons. The duality between primal and dual Schnyder woods becomes nicely visible on
the surface. Moreover, it was in this context of geodesic embeddings of planar graphs
on orthogonal surfaces that the duality was first observed by Miller [9]. For details on
geodesic embeddings and the connections with Schnyder woods we refer to [9] and [3].

Recall that the definition of the suspension Gσ of a plane graph G was based on
the choice of three vertices a1, a2, a3 in clockwise order from the outer face of G. The
suspension dual Gσ∗ is obtained from the dual G∗ by some surgery: The dual-vertex
corresponding to the unbounded face is replaced by a triangle with vertices b1, b2, b3 which
are the three special vertices for the Schnyder woods on Gσ∗. More precisely, let Ai be
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b2

b1

b3a1

a2a3

Figure 9: A suspended graph Gσ with a Schnyder wood, a corresponding embedding and
the dual Schnyder wood.

the set of edges on the arc of the outer face of G between vertices aj and ak, with
{i, j, k} = {1, 2, 3}. Let Bi be the set of dual edges to the edges in Ai, i.e., B1 ∪B2 ∪B3 is
the set of edges containing the vertex v∗

∞ of G∗ which corresponds to the unbounded face of
G. Exchange v∗

∞ by bi at all the edges of Bi and add three edges {b1, b2}, {b2, b3}, {b1, b3}
and an half-edge that reaches into the triangle face {b1, b2, b3} to each of the special
vertices bi. The resulting graph is the suspension dual Gσ∗ of G. Figure 9 illustrates the
definition.

Proposition 3. Let Gσ be a suspension of a 3-connected plane graph G. There is a
bijection between the Schnyder woods of Gσ and the Schnyder woods of the suspension
dual Gσ∗.

Proof. In [3] it is shown that Schyder woods of Gσ are in bijection to Schnyder angle
labelings. These are labelings of the angles of Gσ with the labels 1, 2, 3 satisfying three
rules.

(A1) The two angles at the half-edge of the special vertex ai have labels i + 1 and i − 1
in clockwise order.

(A2) Rule of vertices: The labels of the angles at each vertex form, in clockwise order, a
nonempty interval of 1’s, a nonempty interval of 2’s and a nonempty interval of 3’s.

(A3) Rule of faces: The labels of the angles at each interior face form, in clockwise order,
a nonempty interval of 1’s, a nonempty interval of 2’s and a nonempty interval of 3’s.
At the outer face the same is true in counterclockwise order.

There is an obvious one-to-one correspondence between the angles of Gσ and the inner
angles of Gσ∗. This correspondence yields an exchange between the rule of vertices and
the rule of faces. Therefore, any Schnyder labeling of Gσ is a Schnyder labeling of Gσ∗

and vice versa. This is exemplified in Figure 10.
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Figure 10: Bold edges show a suspended graph Gσ, light edges correspond to Gσ∗. The
Schnyder angle labeling shown is valid for both graphs.

Notable is the connection between Schnyder labelings and orthogonal embeddings:
The angle labeling in Figure 10 corresponds to the shades in the orthogonal embedding
of the same graph in Figure 9.

We now define the completion of a plane suspension Gσ and its dual Gσ∗. Superimpose
Gσ and Gσ∗ so that exactly the primal dual pairs of edges cross (the half edge at ai has a
crossing with the dual edge {bj , bk}, for {i, j, k} = {1, 2, 3}). The common subdivision of

each crossing pair of edges by a new edge-vertex gives the completion G̃σ. The completion
G̃σ is planar and has six half-edges reaching into the unbounded face. Similar to the
closure of a suspension we define the closure G̃σ∞ of G̃σ by adding a new vertex v∞ which
is the second endpoint of the six half-edges.

A pair of corresponding Schnyder woods on Gσ and Gσ∗ induces an orientation of G̃σ∞
which is an α-orientation for the following αS:

• αS(v) = 3 for all primal- and dual-vertices v.

• αS(ve) = 1 for all edge-vertices ve.

• αS(v∞) = 0 for the special closure vertex v∞.

The outdegree of a primal- or dual-vertex is three by Schnyder wood axiom (W3). The

outdegree of v∞ is zero since all six half edges of G̃σ are directed outwards (W2). For
the edge-vertices we first recall the translation from a Schnyder labeling to a Schnyder
wood as given in [2]: If an edge has different angular labels i and j at its primal- or
dual-endvertex it is oriented away from this vertex in label k. Lemma 1 of [2] says that in
a Schnyder labeling the four angles around an edge are labeled i, i−1, i+1, i in clockwise
order for some i ∈ {1, 2, 3}. This shows that at the corresponding edge-vertex ve only the
edge between the two i labeled angles is outgoing, the other three edges are incoming,
i.e., αS(ve) = 1.
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Proposition 4. The Schnyder woods of a planar suspension Gσ are in bijection with
αS-orientations of G̃σ∞.

Proof. With a Schnyder wood of Gσ we have a Schnyder labeling of angles and thus a
dual Schnyder wood on Gσ∗. As already shown this pair induces an αS-orientation of G̃σ∞.

It remains to recover a unique pair of Schnyder woods from any given αS-orientation
of G̃σ∞. The orientation of edges is clearly given, but for Schnyder woods the edges also
need labels. Given an edge e we define the straight path of e by a simple rule.

Straight path rule: Upon entering an edge-vertex on edge eh continue on the other side,
i.e., traverse the other half of the underlying primal or dual edge. When entering a
primal- or dual-vertex v on eh and eh is directed towards v continue with the opposite
outgoing edge. If eh is outgoing at v the continuation depends on the outgoing edge
at the edge-vertex ve on the other side of eh. If the outgoing edge at ve points to the
right of the straight path choose the right outgoing edge at v and if the outgoing edge
at ve points to the left continue the straight path with the left outgoing edge at v.
The rule is illustrated in Figure 11.

eh v eh

ve

v

Figure 11: Illustrating the straight path rule, bold edges indicate the straight path.

A straight path may reach the special vertex v∞. There is no continuation at this vertex
and the straight path ends. The next lemma shows that every straight path ends that
way.

Lemma 15. Let X be an αS-orientation of G̃σ∞ and e ∈ X be a directed edge. The straight
path whose first edge is e leads to v∞ where it ends.

Proof. Suppose some straight path does not end at v∞ then it has to run in into a cycle.
In that case we find a simple cycle v1, v2, . . . , v2k, v1 as part of the straight path starting
with eh = (v1, v2). Every second vertex on the cycle is an edge-vertex, omitting these
vertices yields a simple cycle C ′ in Gσ or in Gσ∗. Assume that C ′ is a cycle in Gσ and let
H be the planar graph induced by C ′ and its interior (the interior of a cycle is defined
relative to v∞ which is exterior). H has k vertices on its exterior cycle, let r be the number
of inner vertices and s be the number of inner faces of H . Hence, |V (H)| = k + r and
|F (H)| = s + 1. By Euler’s Formula |E(H)| = k + r + s − 1.

Let H̃ be the graph induced by C and its interior in G̃σ∞. Since this graph is closely
related to H we know that it has k + r + s − 1 edge-vertices. The degree of k of these

the electronic journal of combinatorics 11 (2004), #R15 20



edge-vertices is only 3 since they sit on the outer cycle C of H̃ . Counting edges of H̃ at
edge-vertices shows that this number is |E(H̃)| = 3k + 4(r + s − 1).

A second count of the edges of H̃ can be done by considering the orientation X and
counting the edges at their source vertices. H̃ has r+ s interior primal- and dual-vertices,
each of these has outdegree 3 in the αS-orientation X. There are r + s − 1 interior edge-
vertices, each with outdegree 1. Therefore, the number of edges of H̃ emanating from
interior vertices is 4(r+s)−1. On the outer cycle C there are 2k edges. It remains to count
those edges pointing from a vertex on cycle C to the interior. Looking at Figure 11 we
observe that together an edge-vertex and its subsequent primal-vertex on C have exactly
one edge pointing into the interior of C. Altogether there are k such pairs on C. The
total number of edges thus is |E(H̃)| = 4(r + s) − 1 + 3k.

Comparing the two counts for |E(H̃)| we obtain the contradiction −4 = −1. This
shows that the straight path rule never leads into a cycle and proves the lemma.

The lemma is the basis for a simple rule for assigning a label (color) to every edge of

an αS-orientation of G̃σ∞. With the directed edge e consider the straight path. The last
vertex visited by this path before its end in v∞ is one of a1, a2, a3, in case the underlying
edge of e is a primal edge, or one of b1, b2, b3, if the underlying edge of e is a dual edge.
Take the index of this last vertex as the label for e, e.g., if the straight path starting with
e has (a2, v∞) as its last edge the label of e is 2.

The claim is that mapped back to Gσ and Gσ∗ this labeling and orientation gives a
pair of Schnyder woods on these graphs. For the verification of the axioms for Schnyder
woods we need another lemma.

Lemma 16. Let X be an αS-orientation of G̃σ∞. If x is a primal- or dual-vertex and p
and q are two straight paths leaving x on different edges then p and q meet only at v∞.

Proof. We assume that x is a primal-vertex. Suppose that after leaving x the straight
path p shares a vertex y 6= v∞ with q. Let y be the first such vertex on p. With an
edge-vertex every straight path also contains both adjacent primal-vertices. Therefore, y
has to be a primal-vertex.

Corresponding to p and q there are paths p′ and q′ from x to y in Gσ. The arcs from x
to y on p′ and q′ bound an interior region R. As in the proof of Lemma 15 we consider the
restriction GR of Gσ to R. Let r be the number of inner vertices, s be the number of inner
faces and k be the number of vertices on the exterior cycle of GR. Hence, |V (GR)| = k+r
and |F (GR)| = s + 1. By Euler’s Formula |E(GR)| = k + r + s − 1.

For the subgraph G̃R of G̃σ∞ corresponding to GR we find |E(G̃R)| = 3k +4(r + s−1).

This count is obtained by considering edge-vertices and their incident edges in G̃R.
A second count of the edges of G̃R is done by counting the edges at their source vertices

in the orientation X. This is again done as in the proof of Lemma 15. The difference is
that on the arcs of p′ and q′ between x and y we may only find k − 2 pairs consisting of
an edge-vertex and the subsequent primal-vertex on the straight path. Still we get the
estimate |E(G̃R)| ≥ 4(r + s) − 1 + 3k − 2.

The two counts for |E(G̃R)| yield the contradiction −4 ≥ −3.
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We are ready now to complete the proof of Proposition 4 by verifying the Schnyder
wood axioms. The most interesting axiom is (W3): Since X is an αS-orientation a vertex
v has exactly three outgoing edges. The labeling rule and Lemma 16 imply that the
labels of these three edges are different. Since the special vertices a1, a2, a3 are clockwise
on the outer cycle of G it follows, again from Lemma 16, that the edges e1, e2, e3 leaving
v in labels 1,2,3 occur in clockwise order. The labeling rule, which was derived from the
straight path rule, implies that an edge entering v in the sector between ei+1 and ei−1 has
label i. This shows that (W3) is valid.

Axiom (W2) is trivial. The orientation part of (W1) is obvious. The labels of a
bidirected edge are different, otherwise the incident vertices would have at least two
outgoing edges in one label, a contradiction to (W3). A face whose border is directed in
one label would imply a contradiction to Lemma 15, therefore, (W4) must also hold. This
completes the proof of the proposition.

Combining Proposition 4 and Theorem 1 we obtain the main result of this section.

Theorem 4. The set of Schnyder woods of a planar suspension Gσ form a distributive
lattice.

In the case of Schnyder woods a full characterization of all possible essential cycles
seems to be a complex task. Unlike in the case of spanning trees or Eulerian orientations
it is not enough to consider faces of G̃σ∞ as candidates for essential cycles.

We first discuss the case of a planar triangulation G. In this case all the inner vertices
of the suspension dual Gσ∗ are of degree 3. Therefore, all the edges of G̃σ∞ that correspond
to Gσ∗ are rigid, they point from the dual-vertex to the edge-vertex. This very special
property made it possible to investigate the lattice of Schnyder woods of a planar trian-
gulation without reference to duality (see [10] and [1]). The usual essential cycles in this

case are triangular faces of G, this corresponds to the union of three faces of G̃σ∞ sharing a
vertex of degree 3. For 4-connected triangulations these are all essential cycles. However,
if G has separating triangles these also are essential cycles.

If G is not triangulated the structure of essential cycles for the αS-orientations of G̃σ∞
can be more complex, in Figure 12 we display three examples. From the shown examples
further examples can be obtained with the following surgery: Choose a degree three vertex
v in the interior of the essential cycle. Remove v and its three edges this leaves an empty
6-gon T . Choose a completed plane graph H̃σ and paste this graph into the triangular face
by identifying the outer 6-gon of H̃σ with T such that edge-vertices go on edge-vertices.
With the next lemma we show that still in some sense the essential cycles cannot be too
complicated.

Lemma 17. Let Gσ be suspended plane graph. The possible length of essential cycles for
αS-orientations of G̃σ∞ are 4, 6, 8, 10 and 12.

Proof. Let C be an essential cycle. Since G̃σ∞ is bipartite every second vertex on C is an
edge-vertex, therefore, the length |C| of C is even. If |C| = 4 then C is the boundary
of a face. If |C| > 4 then the interior of C contains vertices. If C is essential all the
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Figure 12: Bold edges show non-trivial essential cycles for αS-orientations.

edges in the interior cut ECut[IC ] are directed towards C: Suppose an edge e in ECut[IC ]
is directed away from C. The straight path starting with e will eventually leave C thus
giving a chordal path for C. By Lemma 4 this is in contradiction to C being essential.

Consider an edge-vertex ve on C. We claim that either one ore two edges in ECut[IC ]
are incident to ve. Suppose that ECut[IC ] contains no edge incident to ve. Consider the
4-face F interior of C with ve as one of its corners. Let v′ be the edge-vertex diagonally
opposite to ve on F . Recall that αS(v′) = 1 and all edges in ECut[IC ] are directed towards
C. It is impossible to satisfy these two conditions simultaneously.

We can thus classify the edge-vertices on C as either straight, if both neighbors on C
are primal-vertices or both are dual-vertices, or reflex, if they have two incident edges in
the interior cut of C. Let a be the number of reflex vertices on C.

As in previous proofs we consider the graph H obtained by restricting G̃σ∞ to C and
its interior. Let |C| = 2k and let there be r primal-vertices, s dual-vertices and t edge-
vertices in the interior of C. Considering edges of H at their source in an αS-orientation
we find that |E(H)| = 3(r + s) + t + 2k. Since |V (H)| = r + s + t + 2k Euler’s formula
implies that the number of faces of H is 2(r + s) + 2. Excluding the unbounded face the
faces of H are 4-faces, therefore, 2|E(H)| = 4(2(r + s) + 1) + 2k. Yet another count of
edges of H is by counting them at their incident edge-vertex. Since there are a reflex
vertices on C this gives |E(H)| = 4t + 3k + a. Elementary algebra yields 2k = a + 6.
Together with the obvious inequality a ≤ k this gives k ≤ 6 and completes the proof.
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