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ASYMMETRIC TRANSITION PROBABILITIES∗
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Abstract. In this paper, a Markov chain small-world model of D.J. Higham is broadened

by incorporating asymmetric transition probabilities. Asymptotic results regarding the transient

behavior of the extended model, as measured by its maximum mean first passage time, are established

under the assumption that the size of the Markov chain is large. These results are consistent with

the outcomes as obtained numerically from the model.

The focus of this study is the effect of a varying degree of asymmetry on the transient behavior

which the extended model exhibits. Being a quite interesting consequence, it turns out that such

behavior is largely influenced by the strength of asymmetry. This discovery may find applications in

real-world networks where unbalanced interaction is present.
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1. Introduction. First we briefly describe the Markov chain small-world model
of a ring network originally proposed by Higham [9]. For background material on the
small-world phenomenon, we refer the reader to [13, 14, 15].

Consider a ring network consisting of N + 1 vertices, which are labeled clockwise
as 0, . . . , N . Initially, each vertex is connected to its neighboring vertices1 by directed
edges. A one-dimensional symmetric periodic random walk is then introduced on such
a ring network. Specifically, starting from any vertex, the process moves to any of the
neighboring vertices with equal probability 1/2 over one time unit, thus leading to a
homogeneous ergodic Markov chain with state space S = {0, . . . , N} and transition
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1For any specified vertex, this term refers to the two nearest neighboring vertices on the ring

network.
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matrix

P0 =



0 p p

p
. . . . . .
. . . . . . . . .

. . . . . . p

p p 0


∈ R

(N+1)×(N+1),

where p = 1/2.

To model the small-world phenomenon on the ring network, the above Markov
chain is modified by also allowing the process to jump to non-neighboring vertices
with some small probability ε. For such a modified Markov chain, the transition
matrix becomes

Pε =



ε p̃ ε · · · p̃

p̃
. . . . . . . . .

ε
. . .

. . .
. . .

...
. . . . . . . . . p̃

p̃ p̃ ε


∈ R

(N+1)×(N+1),

where 0 < ε ≤ 1
N−1 and p̃ = 1

2 [1 − (N − 1)ε]. We comment that the idea of adding
long-range random jumps to non-neighboring vertices is in line with that of the
Newman-Moore-Watts model [14], where such jumps are called shortcuts. The small-
world phenomenon is known, see [14], to emerge as a result of adding a small amount
of random shortcuts to the ring network, even though this framework seems simplistic
as compared with real-world networks.

It is shown in [5, 9] that the Markov chain model as described above can be
employed to capture the small-world phenomenon on the ring network, with results
well conforming to those in [14] and in the well-known work by Watts and Strogatz
[15]. In addition, the Markov chain approach appears to have an advantage in that it
offers a more rigorous analysis of the ring network by incorporating tools in the fields
of Markov chain theory, matrix theory, and differential equations.

In order to characterize the small-world property of the ring network in the
Markov chain setting, the notion of mean first passage times, see [11], is adopted
in [5, 9]. Extensive numerical evidence suggests that the maximum and average mean
first passage times of the Markov chain model resemble the average, or characteris-
tic, path-length as in [14, 15]. These quantitative Markov chain measures, therefore,
provide us with an analytical, instead of experimental, way of investigating the small-
world phenomenon arising on the ring network. We mention that the notion of mean
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first passage times is also utilized in [10] to deal with the greedy path-length problem
on the ring network.

The existing results in [5, 9], however, concern only the situation with symmet-
ric transition probabilities, yet real-world networks, in general, involve asymmetric
processes or interaction, an element distinct from simple topological structures. Ex-
amples in this regard include metabolic networks [1], social and large infrastructures
[3], food webs [12], and communication networks [2]. Especially, taking communica-
tion networks as one instance, asymmetry occurs when the bandwidth, medium access
control overhead, or loss rate is different in one direction than in the other.

In view of asymmetric interaction, it is natural for us to recast the ring network
as a weighted digraph, with each weight representing the strength of the respective
edge, namely, in terms of a communication network, the capacity, cost, or reliability of
that link. In this work, we examine such a ring network based on an adapted Markov
chain model stemming from Higham’s. In particular, similar to [5, 9], we are primarily
interested in the transient behavior of the Markov chain, as measured by its maximum
mean first passage time. It turns out that such behavior is significantly influenced
by the intensity of asymmetry, a quite unique feature which may find applications in
real-world networks, including applications relative to the small-world phenomenon.
The outcomes from this study also serve as a follow-up to [5] by extending the results
there.

This paper is organized as follows: First, Section 2 contains the adaptation of
the current Markov chain model so as to accommodate asymmetric interaction. Some
necessary preliminary conclusions are stated in Section 3. Next, asymptotic results on
the maximum mean first passage time are developed in Section 4. Section 5 provides
further results in the context of the transient behavior of the Markov chain, together
with examples, numerical results, and discussions. Finally, a few concluding remarks
are presented in Section 6.

2. Markov chain model with asymmetry. Again, consider a ring network
with N + 1 vertices, labeled clockwise as 0, . . . , N . Suppose that at first, each vertex
is connected to its neighboring vertices by directed and weighted edges. For any
j = 0, . . . , N , the weights associated with edges {j, j + 1} and {j, j− 1}2 are assumed
to be some fixed w1 and w2, respectively. Let 0 < w1 < w2. Such a setting leads to a
one-dimensional asymmetric periodic random walk on the ring network. Specifically,
starting from any vertex, the process moves over one time unit either to the clockwise
neighboring vertex with probability p or to the counterclockwise neighboring vertex
with probability q = 1 − p, where p and q are assumed to be proportional to w1 and
w2, respectively. Hence a homogeneous ergodic Markov chain is defined, with state

2The indices for edges are interpreted with mod N + 1 equivalence.
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space S = {0, . . . , N} and transition matrix

T0 =



0 p q

q
. . . . . .
. . . . . . . . .

. . . . . . p

p q 0


∈ R

(N+1)×(N+1) (2.1)

such that 0 < p < q < 1 and p + q = 1. The ratio of asymmetry is defined to be
r = q/p. Throughout this paper, without loss of generality, we assume that r > 1.
Note that in terms of this ratio r, p = 1

r+1 and q = r
r+1 .

Next, the Markov chain as above is modified by introducing long-range jumps to
non-neighboring vertices according to a small probability ε. The transition matrix of
this modified Markov chain can be expressed as

Tε =



ε p̃ ε · · · q̃

q̃
. . . . . . . . .

ε
. . .

. . .
. . .

...
. . . . . . . . . p̃

p̃ q̃ ε


∈ R

(N+1)×(N+1), (2.2)

where p̃ = p− a and q̃ = q− b. The stochasticity of Tε implies that a + b = (N − 1)ε.
If we assume that a/b = p/q, namely the changes in p and q are proportional to p

and q, respectively, then we obtain that for 0 < ε ≤ 1
N−1 ,

p̃ =
µ

r + 1
≥ 0 and q̃ =

µr

r + 1
≥ 0, (2.3)

where r = q/p, the ratio of asymmetry, and µ = 1 − (N − 1)ε ∈ [0, 1).

In the same spirit as [5, 9], with the adapted Markov chain model, we resort to the
mean first passage times from states 1, . . . , N to state 0 for quantifying the transient
behavior of the ring network. It is convenient to denote these quantities on the original
and the modified Markov chains as column vectors z(0) and z(ε), respectively. In this
work, we focus on investigating maxi z

(0)
i and maxi z

(ε)
i , i.e. the worst case analysis

concerning the transient behavior of the Markov chain model. The methodology,
however, can be extended to tackle the average case analysis as well.

It should be pointed out that, unlike in [5, 9], the relationship between maxi z
(0)

or maxi z
(ε) and the average path-length is to be interpreted with caution as for a

weighted graph, there is no unequivocal notion of average path-length. Such maximum
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mean first passage times, nevertheless, may be associated with, in the terminology of
communication networks, the average relative throughput, overhead, or packet loss.3

Starting from now, for the sake of brevity, we simply identify the ring network,
with or without long-range jumps, with the corresponding Markov chain. Thus we use
such descriptions as the mean first passage times on the ring network, the transition
matrix and the states of the ring network, and symmetry or asymmetry of the ring
network.

3. Preliminaries. Consider the following tridiagonal matrix:

A =



c0 c1

c−1
. . . . . .
. . . . . . . . .

. . . . . . c1
c−1 c0


∈ R

N×N , (3.1)

where ci’s are such that c1 �= 0 and

δ = c20 − 4c1c−1 > 0. (3.2)

Hence the equation

c1x
2 + c0x + c−1 = 0 (3.3)

yields two distinct real roots, which we denote by x1 and x2. We comment that
condition (3.2) guarantees that A is non-singular. In fact, it is known, see [4] for
example, that the spectrum of A can be written as

σ(A) =
{
c0 − 2

√
c1c−1 cos

iπ

N + 1

}N

i=1

,

which is obviously bounded away from 0. Suppose that A−1 =
[
a
(−1)
i,j

]
. Then,

according to [8], we have:

3Generally speaking, the weights w1 and w2 may be thought of as costs. For instance, a link

with a higher capacity or lower rate of loss may be associated with a lower cost. If so we may assume

that the probabilities p and q are inversely proportional to w1 and w2, respectively, i.e. that the

random walk tends to follow a link with lower cost.
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Lemma 3.1. ([8, Section 3]) Let A be defined as in (3.1). Assume that c1 �= 0
and that condition (3.2) holds. Then A−1 =

[
a
(−1)
i,j

]
is given by

a
(−1)
i,j =



(x−j
1 − x−j

2 )(xN+1
1 xi

2 − xi
1x

N+1
2 )

c1(x1 − x2)(xN+1
1 − xN+1

2 )
, j ≤ i,

− (xi
1 − xi

2)(xN+1−j
1 − xN+1−j

2 )
c1(x1 − x2)(xN+1

1 − xN+1
2 )

, j ≥ i,

(3.4)

where x1 and x2 are the two distinct real roots of (3.3).

Lemma 3.1 results immediately in the following three conclusions, whose proofs
are omitted, on the row sums of A−1. In the rest of this paper, we denote by e a
column vector of all ones.

Lemma 3.2. Under the assumptions of Lemma 3.1, if x1 = 1, then the i-th row
sum of A−1 is given by

(
A−1e

)
i

= − i(xN+1
2 − 1) − (N + 1)(xi

2 − 1)
c1(x2 − 1)(xN+1

2 − 1)
. (3.5)

Lemma 3.3. Under the assumptions of Lemma 3.1, if x1, x2 �= 1, then the i-th
row sum of A−1 is given by

(
A−1e

)
i

= −xN+1
2 − xN+1

1 − xi
1x

N+1
2 + xN+1

1 xi
2 − xi

2 + xi
1

c1(xN+1
2 − xN+1

1 )(1 − x1)(x2 − 1)
. (3.6)

Lemma 3.4. Under the assumptions of Lemma 3.3, (3.6) reduces to (3.5) as x1

approaches 1, i.e. given that x1, x2 �= 1,

lim
x1→1

xN+1
2 − xN+1

1 − xi
1x

N+1
2 + xN+1

1 xi
2 − xi

2 + xi
1

c1(xN+1
2 − xN+1

1 )(1 − x1)(x2 − 1)
=

i(xN+1
2 − 1) − (N + 1)(xi

2 − 1)
c1(x2 − 1)(xN+1

2 − 1)
.

We now proceed to our main results regarding the maximum mean first passage
times maxi z

(0)
i and maxi z

(ε)
i .

4. Main results.

4.1. Original Markov chain. First, we study the maximum mean first passage
time to state 0 on the original ring network, whose transition matrix T0 is expressed
as in (2.1).
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Let T̂0 be the principal submatrix obtained from T0 by deleting its first row and
column. It is well-known [6, 7] that the mean first passage times from states 1, . . . , N
to state 0 can be written as

z(0) = (I − T̂0)−1e.

The following theorem formulates an explicit expression for z(0).

Theorem 4.1. For the homogeneous ergodic Markov chain with transition matrix
(2.1), the mean first passage time from state i to state 0 is given by

z
(0)
i =

(r + 1)
[
i(rN+1 − 1) − (N + 1)(ri − 1)

]
(r − 1)(rN+1 − 1)

, (4.1)

where r is the ratio of asymmetry.

Proof. With c0 = 1, c1 = −p, and c−1 = −q in (3.3), it can be easily verified that
x1 = 1 and x2 = r. Hence formula (4.1) follows directly from Lemma 3.2.

It turns out that as r approaches 1, i.e. when the ring network becomes increas-
ingly predominantly symmetric, z(0)

i in (4.1) approaches the mean first passage time
from state i to state 0 on a symmetric ring network, which is known to be i(N +1− i)
[5]. We state this conclusion below without proof as it is a matter of straightforward
calculation.

Theorem 4.2. The mean first passage time from state i to state 0 on a symmetric
ring network coincides with the limit of z(0)

i in (4.1) as r approaches 1, i.e.

lim
r→1

z
(0)
i = i(N + 1 − i).

It is shown in [5] that for a symmetric ring network, the maximum mean first
passage time occurs roughly at i = N+1

2 , namely “half-way” between states 0 and N .
When it comes to an asymmetric ring network with r > 1, however, maxi z

(0)
i emerges

at some state im which is much biased towards state N as can be seen in Figure 4.1.
Numerical experiment indicates that for any fixed r > 1, im moves closer to N , as
measured by im/N , when N increases. The next two theorems provide asymptotic
results concerning im and maxi z

(0)
i .

Theorem 4.3. When N is sufficiently large, z(0)
i as in (4.1) attains its maximum

at

im = N + 1 − ln [(N + 1)(r − 1)]
ln r

. (4.2)

In addition,

max
i

z
(0)
i =

(N + 1)(r + 1)
r − 1

[
1 + O

(
ln(N + 1)
N + 1

)]
. (4.3)
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z
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i

Fig. 4.1. The dotted, dashdot, dashed, and solid curves represent z
(0)
i with N-values 20, 100,

500, and 2500, respectively, for the case when r = 1.2.

Proof. From (4.1), we see that the difference in z
(0)
i can be written as

z
(0)
i+1 − z

(0)
i =

(r + 1)
[
rN+1 − 1 − (N + 1)(r − 1)ri

]
(r − 1)(rN+1 − 1)

=
(r + 1)

[
1 − r−(N+1) − (N + 1)(r − 1)r−(N+1−i)

]
(r − 1)

[
1 − r−(N+1)

] .

Notice that the factor (N + 1)(r − 1)r−(N+1−i) above is increasing in i. Besides, for
N large enough, z(0)

2 − z
(0)
1 > 0 and z

(0)
N − z

(0)
N−1 < 0. Consequently, there is a unique

maxi z
(0)
i , which is attained at some 1 < i < N .

Continuing, we observe that

z
(0)
im+1 − z

(0)
im

=
(r + 1)

{
1 − r−(N+1) − (N + 1)(r − 1)r−

ln[(N+1)(r−1)]
ln r

}
(r − 1)

[
1 − r−(N+1)

]
=

−(r + 1)r−(N+1)

(r − 1)
[
1 − r−(N+1)

] < 0

and, similarly, that

z
(0)
im

− z
(0)
im−1 =

(r + 1)
[
1 − r−(N+1) − r−1

]
(r − 1)

[
1 − r−(N+1)

] > 0,

which imply that (4.2) holds.
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Finally, substituting (4.2) into (4.1) yields that

z
(0)
im

=
(N + 1)(r + 1)

r − 1
− (r + 1) ln [(N + 1)(r − 1)]

(r − 1) ln r
− (r + 1)rN+1

(r − 1)2(rN+1 − 1)

+
(N + 1)(r + 1)

(r − 1)(rN+1 − 1)

=
(N + 1)(r + 1)

r − 1
+ O (ln(N + 1)) .

This concludes the proof.

It should be mentioned that, in fact, maxi z
(0)
i can be expressed as

max
i

z
(0)
i =

(r + 1)im
r − 1

+ O (1) .

The formulation for maxi z
(0)
i in (4.3), however, turns out to be sufficiently accurate

for our purpose.

Theorem 4.4. Let im be given as in (4.2). Then

lim
N→∞

z
(0)
im

z
(0)
N

=
r

r − 1
. (4.4)

Proof. It is quite straightforward to verify this limit.

We comment that Theorem 4.4 confirms that for N large enough, im is indeed
strictly smaller than N because it can be seen from (4.4) that z

(0)
im

> z
(0)
N . In addi-

tion, this theorem serves as an alternative estimate of maxi z
(0)
i in terms of z

(0)
N , i.e.

maxi z
(0)
i ≈ rz

(0)
N

r−1 , provided that N is sufficiently large.

4.2. Modified Markov chain. Next, we investigate the maximum mean first
passage time to state 0 on the modified ring network, whose transition matrix Tε is
formulated as in (2.2).

Let T̂ε be the principal submatrix obtained from Tε by deleting its first row and
column. Similar to z(0), z(ε) is determined by

z(ε) = (I − T̂ε)−1e.

Note that

I − T̂ε = A− εeeT , (4.5)
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where the N ×N matrix A is in the form of (3.1) with

c0 = 1, c1 = ε− µ

r + 1
, and c−1 = ε− µr

r + 1
. (4.6)

Obviously, c−1 < c1.

Following the methodology of [5, 9], we are mainly concerned with the question
as to how the small probability ε of jumping to non-neighboring states on the ring
network affects the maximum mean first passage time to state 0, given that the size
of the ring network is large enough. Recall that 0 < ε ≤ 1

N−1 . Especially, c1 becomes

0 at ε = 1
N+r , which lies in the range

(
0, 1

N−1

)
, and thus the results in Section 3

no longer apply. To avoid such singularity, we further assume, without much loss of
generality, that

0 < ε < εm =
1

N + r
. (4.7)

This additional assumption implies that c−1 < c1 < 0, as is clear from (4.6).

We continue with several technical lemmas.

Lemma 4.5. Let ci’s be given as in (4.6). Suppose that 0 < ε < εm. Then the
discriminant as quoted in (3.2) can be written as

δ =
(r + 1)2 − 4 [1 − (N + r)ε] [r − (Nr + 1)ε]

(r + 1)2
. (4.8)

In addition, we have that 0 < δ < 1 and that δ is increasing in ε.

Proof. Note that (N + 1)ε < 2 whenever ε < εm. It can be readily verified by
(4.6) that

δ = (N + 1)ε [2 − (N + 1)ε] +
µ2(r − 1)2

(r + 1)2
> 0.

This formula for δ reduces to (4.8) by combining with µ = 1 − (N − 1)ε.

The fact that δ < 1 can be seen from [1 − (N + r)ε] [r − (Nr + 1)ε] > 0. To
justify that δ is increasing in ε, we observe that from (4.8),

dδ

dε
=

4
[
r2 + 2Nr + 1 − 2(N + r)(Nr + 1)ε

]
(r + 1)2

.

Since

r2 + 2Nr + 1
2(N + r)(Nr + 1)

− εm =
r2 − 1

2(N + r)(Nr + 1)
> 0,
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it follows that dδ
dε > 0 for any 0 < ε < εm.

Lemma 4.6. For the matrix A as defined in (3.1) with ci’s as given by (4.6),
assuming that 0 < ε < εm, equation (3.3) has two distinct real roots

x1 =
(r + 1)

(
1 −√

δ
)

2 [1 − (N + r)ε]
(4.9)

and

x2 =
(r + 1)

(
1 +

√
δ
)

2 [1 − (N + r)ε]
(4.10)

such that 0 < x1 < 1, x2 > r, and x1x2 > 1. Furthermore, limε→0+ x1 = 1,
limε→0+ x2 = r, limε→ε−m x1 = r−1

N+r , and limε→ε−m x2 = ∞.

Proof. The derivation of (4.9) and (4.10) is straightforward.

It is obvious that x1 > 0. On the other hand, we have that

x1 =
r + 1 −√

(r + 1)2 − 4 [1 − (N + r)ε] [r − (Nr + 1)ε]
2 [1 − (N + r)ε]

.

Notice that{
r + 1 − 2 [1 − (N + r)ε]

}2

−
{

(r + 1)2 − 4 [1 − (N + r)ε] [r − (Nr + 1)ε]
}

= −4(N + 1)(r + 1) [1 − (N + r)ε] ε < 0,

which implies that x1 < 1. The claim that x2 > r can be shown in a similar fashion.
In addition, x1x2 = c−1

c1
> 1 since c−1 < c1 < 0.

The limits of x1 and x2 while ε is pushed towards 0 or εm can all be verified
directly.

Before proceeding, it should be mentioned that there is an interplay between ε

and N , assuming that r is given. In particular, for any specified ε, N can not be
arbitrarily large due to the restriction, following (4.7), that

N <
1
ε
− r. (4.11)

In view of real-world applications, we shall focus on the scenario where ε is sufficiently
close to 0 but fixed. Whether N is large enough or not should be construed in this
context according to the upper bound in (4.11).
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We are now ready to return to (4.5). Due to this rank-one update relationship
between I − T̂ε and A, it is known [5] that

z(ε) =
A−1e

1 − εeTA−1e
. (4.12)

By formula (4.12) as well as Lemmas 3.3 and 4.6, it follows:

Theorem 4.7. For the homogeneous ergodic Markov chain with transition matrix
(2.2), the mean first passage time from state i to state 0 is in the form

z
(ε)
i =

(
A−1e

)
i

1 − εeTA−1e
, (4.13)

where

(
A−1e

)
i

=
(x1 + x2)

(
xN+1

2 − xN+1
1 − xi

1x
N+1
2 + xN+1

1 xi
2 − xi

2 + xi
1

)
(xN+1

2 − xN+1
1 )(1 − x1)(x2 − 1)

, (4.14)

with x1 and x2 being given by (4.9) and (4.10), respectively.

Proof. The conclusion is immediate. Note that c1 = − 1
x1+x2

.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

i/N

z
(ε

)
i

/
m

ax
i
z
(ε

)
i

Fig. 4.2. The dotted, dashdot, dashed, and solid curves represent z
(ε)
i with N-values 20, 100,

500, and 2500, respectively, for the case when ε = 1 × 10−5 and r = 1.2.

Numerical experiments suggest that when ε is small but prescribed, and when N

is large enough, unlike maxi z
(0)
i , maxi z

(ε)
i tends to emerge at some state im “half-

way” between states 0 and N as illustrated in Figure 4.2. In fact, when N is very
large, the graph of z

(ε)
i appears to be essentially flat except at i values close to 1 or
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N . We recall that according to Lemma 3.4, as ε approaches 0, z
(0)
i and z

(ε)
i become

identical. It should be noted, however, that the test result in Figure 4.2 does not
contradict that in Figure 4.1 since the value of ε here is fixed, rather than being
pushed towards 0.

Using Theorem 4.7, we can establish as follows two asymptotic results concerning
im and maxi z

(ε)
i .

Theorem 4.8. For any sufficiently small 0 < ε < εm, when N is sufficiently
large, z(ε)

i attains its maximum at

im =
(N + 1) lnx2

ln
(

x2
x1

) , (4.15)

which satisfies that im > N+1
2 . Furthermore,

max
i

z
(ε)
i =

N + 1√
δ

+ O
(

max
{
x

N+1
2

1 , x−N
2

})
, (4.16)

where δ is given as in (4.8).

Proof. First of all, it is clear from (4.13) that z
(ε)
i is maximized at some i whenever

so is
(
A−1e

)
i
. As a result, it suffices to consider

(
A−1e

)
i

in order to estimate im. By
(4.14), the difference in

(
A−1e

)
i

can be expressed as(
A−1e

)
i+1

− (
A−1e

)
i

=
(x1 + x2)

{
xi

1(1 − x1)
[
1 − x

−(N+1)
2

]
− xi

2(x2 − 1)
(
1 − xN+1

1

)
x
−(N+1)
2

}
[
1 − xN+1

1 x
−(N+1)
2

]
(1 − x1)(x2 − 1)

.

According to Lemma 4.6, 0 < x1 < 1 and x2 > r, leading to the observation
that the term xi

1(1 − x1)
[
1 − x

−(N+1)
2

]
is decreasing in i, while the term xi

2(x2 −
1)
(
1 − xN+1

1

)
x
−(N+1)
2 is increasing in i. Besides, for N large enough,

(
A−1e

)
2
−(

A−1e
)
1

> 0 and
(
A−1e

)
N

− (
A−1e

)
N−1

< 0. Consequently, there is a unique

maxi z
(ε)
i , which is attained at some 1 < i < N .

Continuing, with im as in (4.15), we estimate
(
A−1e

)
im+1

− (
A−1e

)
im

for large
N :(
A−1e

)
im+1

− (
A−1e

)
im

=
(x1 + x2)xim

1[
1 − xN+1

1 x
−(N+1)
2

]
(1 − x1)(x2 − 1)

{
(1 − x1)

[
1 − x

−(N+1)
2

]

−
(
x2

x1

) (N+1) ln x2
ln( x2

x1 ) (x2 − 1)
(
1 − xN+1

1

)
x
−(N+1)
2

}

≈ (x1 + x2)xim
1 (2 − x1 − x2)

(1 − x1)(x2 − 1)
< 0
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since x1 + x2 = r+1
1−(N+r)ε > 2. Similarly, we find that

(
A−1e

)
im

− (
A−1e

)
im−1

≈
(x1 + x2)xim

1

(
1 + x1

x2

)
(1 − x1)(x2 − 1)

> 0.

Hence (4.15) is valid.

In addition, again by Lemma 4.6, x1x2 > 1, which yields that im > N+1
2 . This

can be justified by considering 2 lnx2 = ln
[(

x2
x1

)
x1x2

]
> ln

(
x2
x1

)
.

Now, using (4.14), we obtain that

(
A−1e

)
im

=

(x1 + x2)

{
1 − xN+1

1 x
−(N+1)
2 − xim

1

[
2 − xN+1

1 − x
−(N+1)
2

]}
[
1 − xN+1

1 x
−(N+1)
2

]
(1 − x1)(x2 − 1)

=
x1 + x2

(1 − x1)(x2 − 1)
+ O

(
x

N+1
2

1

)
and that

eTA−1e =
x1 + x2[

1 − xN+1
1 x

−(N+1)
2

]
(1 − x1)(x2 − 1)

{
N
[
1 − xN+1

1 x
−(N+1)
2

]

−
(x1 − xN+1

1 )
[
1 − x

−(N+1)
2

]
1 − x1

− (1 − xN+1
1 )

(
1 − x−N

2

)
x2 − 1

}

=
x1 + x2

(1 − x1)(x2 − 1)

[
N − x1

1 − x1
− 1

x2 − 1

]
+ O

(
max

{
xN+1

1 , x−N
2

})
.

Thus, we arrive at the following:

max
i

z
(ε)
i =

(x1 + x2)(1 − x1)(x2 − 1)
(1 − x1)2(x2 − 1)2 − ε(x1 + x2) [N(1 − x1)(x2 − 1) − x1(x2 − 1) − (1 − x1)]

+O
(

max
{
x

N+1
2

1 , x−N
2

})
. (4.17)

¿From (4.9) and (4.10), it is a matter of direct calculation to verify that

(1 − x1)(x2 − 1) =
(N + 1)(r + 1)ε

1 − (N + r)ε
.

Also note that, as mentioned earlier in the proof, x1 + x2 = r+1
1−(N+r)ε . These reduc-

tions, together with (4.9), (4.10), and (4.17), finally yield (4.16).

We mention that from the foregoing proof, it is quite clear that in fact for any im
in the form of im = (N + 1)γ, where 0 < γ < 1 is fixed,

(
A−1e

)
im+1

− (
A−1e

)
im

≈ 0,

which explains the plateau-shaped graph of z
(ε)
i .
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Fig. 4.3. The solid and dashed curves represent the estimate of maxi z
(ε)
i as provided by (4.16)

and the exact maxi z
(ε)
i , respectively. The graph on the left illustrates the case when N = 100 and

r = 1.2, whereas the graph on the right illustrates the case when N = 500 and r = 1.2. For each

case, the smallest ε value is determined by 10−8/N2.

The formulation of error terms in the preceding proof is based on the observation
that 0 < x1 < 1 and x2 > r. Especially, when N is extremely large, i.e. when
ε ≈ 1

N+r by (4.11), we see from (4.9) that x1 ≈ r−1
N+r , which is far smaller than 1.

This also implies that x2 is far greater than r since x1x2 > 1. Thus, the error terms in
the proof, including the one as in (4.16), are negligible when N becomes sufficiently
large.

The accuracy of the estimate, without the error term, in formula (4.16) is con-
firmed by numerical experiment as well. Two such examples are shown in Figure 4.3,
where the N -values are indeed quite moderate in light of the ε-value. Note that in
the graph on the right, the difference between the two curves is barely discernible.
Numerical results also evidence that the larger N is, the closer the approximation in
(4.16) tends to be towards the actual maxi z

(ε)
i .

Theorem 4.9. Set ζ(ε) = N+1√
δ
, where δ is formulated as in (4.8). Then

lim
ε→0+

ζ(ε) =
(N + 1)(r + 1)

r − 1
,

i.e.

lim
ε→0+

ζ(ε) ≈ max
i

z
(0)
i ,

provided that N is sufficiently large. Moreover, ζ(ε) is decreasing in ε for any 0 < ε <

εm.
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Proof. The claim regarding limε→0 ζ
(ε) follows immediately by referring to (4.3)

and (4.16). In addition, the monotonicity of ζ(ε) is a direct consequence of Lemma
4.5.

Before concluding this section, we comment that the estimates as in (4.3) and
(4.16) hinge upon the fact that r > 1. This means that as r approaches 1, they do
not reduce to the corresponding results for the symmetric ring network as can be
found in [5]. However, for any fixed r > 1, they produce good approximations for the
current asymmetric case, provided that N is sufficiently large.

5. Transient behavior of the Markov chain.

5.1. Reduction ratio. Following [5, 9], we define the reduction ratio ρ in the
maximum mean first passage time to be

ρ =
maxi z

(ε)
i

maxi z
(0)
i

. (5.1)

The question that we are concerned with is how ρ responds to changes in ε, the prob-
ability of jumping to non-neighboring states, and in r, the ratio of asymmetry, with
the assumption that N is sufficiently large. In particular, as in [5, 9], an important
issue is whether ρ undergoes a considerable drop as ε increases. The development in
the preceding section allows us to derive asymptotic results regarding the effects of
varying ε and r on the behavior of ρ.

According to Theorems 4.3, 4.8, and 4.9, we obtain the following useful result on
the reduction ratio ρ:

Theorem 5.1. For any sufficiently small 0 < ε < εm, when N is sufficiently
large, the reduction ratio in (5.1) can be expressed as

ρ = ρ̃ + O

(
ln(N + 1)
N + 1

)
, (5.2)

where

ρ̃ =
r − 1√

(r + 1)2 − 4 [1 − (N + r)ε] [r − (Nr + 1)ε]
. (5.3)

In addition, we have that limε→0+ ρ̃ = 1 and that ρ̃ is decreasing in ε.

The monotonicity of ρ̃ implies the fact that ρ̃ attains its minimum at ε = εm.
This minimum can be interpreted as the best reduction ratio ρb. From (5.2), we arrive
at the next conclusion.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 616-636, November 2008

http://math.technion.ac.il/iic/ela



ELA

632 Jianhong Xu

Theorem 5.2. Let 0 < ε < εm be sufficiently small. If N is sufficiently large,
then the best reduction ratio ρb can be formulated as

ρb =
r − 1
r + 1

. (5.4)

Proof. The conclusion follows immediately from (5.3). We point out that estimate
(5.4) can be derived in an alternative way. Recall that by Theorem 4.6, limε→ε−m x1 =
r−1
N+r and limε→ε−m x2 = ∞. On the other hand, we see from (4.17) that, with x2

2 being
a dominant factor as ε is near εm,

max
i

z
(ε)
i ≈ 1 − x1

(1 − x1)2 −N(1 − x1)ε + x1ε
,

which further reduces to a value of N + 1 as ε approaches εm. This limit, together
with (4.3), lead to (5.4).

Theorem 5.2 reveals the connection between ρb and r. Specifically, when r is
close to 1, ρb can be extremely small; as r increases, however, so does ρb, thus less
significant the drop in ρ is expected to be. A special case of much interest is stated
below.

Theorem 5.3. Suppose that 0 < ε < εm is sufficiently small and that N is
sufficiently large. Then the best reduction ratio ρb ≥ 1/2 when r ≥ 3. Furthermore,
ρb ≈ 1 for r large enough.

It is demonstrated in [5] that for a symmetric ring network, ρ ≤ 1/2 so long
as ε � 32

(N+1)3 , meaning that a substantial drop in ρ can always be achieved as ε

increases. In contrast to this, we see from Theorem 5.3 the rather striking impact of
asymmetry on the transient behavior of the ring network: No significant reduction in
ρ can be attained on a large-scale ring network with ratio of asymmetry r ≥ 3.

5.2. Examples. With the estimate in (5.2), we are now in a position to explore
numerically the transient behavior of the ring network relative to changes in ε and r.

Following [5, 9], we consider that ε = k/Nα, where the parameters k > 0 and
α > 1. We choose k-values in the range Nα × 10−8 < k < Nαεm based on (4.7). We
mention that in all numerical trials, the reduction ratio ρ is computed from formula
(5.2) unless stated otherwise.

The role of parameter α is considered in [5, 9]. The results in [9] apply to the
case when α = 3, while those in [5] apply to the case when α > 1. Intuitively, varying
α amounts to scaling ε, and hence it does not contribute to the intrinsic property of
the ring network. This observation carries over to the asymmetric ring network as
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Fig. 5.1. The solid, dashed, and dashdot curves represent the reduction ratio ρ for α = 1.6, 2,

and 2.4, respectively. For each case, N and r are fixed at N = 500 and r = 1.2.
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Fig. 5.2. The solid, dashed, and dashdot curves represent the reduction ratio ρ for r = 1.2,

1.6, and 2, respectively. The graph on the left shows the case when N = 500 and α = 2, whereas the

graph on the right shows the case when N = 12500 and α = 2.

illustrated in Figure 5.1. Notice that the curves in this figure are in fact on different
ε-axes.

Figure 5.1 also shows that for r = 1.2, there is an abrupt drop in ρ as ε moves away
from 0. We comment that it only takes a very small ε to induce a 50% reduction in ρ.
When α = 2, for instance, the example in Figure 5.1 gives ρ = 0.4990 at k = 6.3096,
which translates into ε = 2.5238× 10−5, far smaller than εm. It should be noted that
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at this ε-value, p̃ = 0.4488 and q̃ = 0.5386 by (2.3), manifesting that the ring network
remains to be dominated by asymmetric processes among its neighboring vertices.

Next, we display in Figure 5.2 the effect of varying the ratio of asymmetry r on
the reduction ratio ρ. The first observation is that with the growth of r, the graph
of ρ shifts towards the right, verifying that the reduction in ρ gradually diminishes.
The second observation is that as r goes up, the maximum drop in ρ becomes smaller,
confirming the prediction as in Theorem 5.2. When N is large enough, as illustrated
in the graph on the right, the best reduction ratios for r = 1.2, 1.6, and 2 move closer
to their estimates from (5.4), namely 0.0909, 0.2308, and 0.3333, respectively.

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8
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Fig. 5.3. The solid curve represents the reduction ratio ρ as in (5.2) for the case when N = 500,

α = 2, and r = 3. Note that in this example, ε goes beyond the range (0, εm). The dashed curve

represents the actual reduction ratio as in (5.1) for the same N , α, and r.

Finally, Figure 5.3 provides an example for the case when r = 3. There is approx-
imately a 50% decrease in ρ as ε is near εm, which is again consistent with Theorem
5.2. It is interesting to observe in Figure 5.3 that as ε passes beyond εm, ρ actually
starts to bounce back. This indicates in a different perspective, besides consideration
of avoiding singularity, that it is indeed reasonable to restrict that ε < εm. As a com-
parison, we also plot in the same figure the exact reduction ratio as obtained from
(4.1), (4.13), and (5.1). Clearly, the estimated reduction ratio conforms well, even for
ε ≥ εm, to the exact reduction ratio.

6. Conclusions. Using the adapted Markov chain model, we study the transient
behavior of the ring network which involves asymmetric interaction. We establish use-
ful asymptotic results on the maximum mean first passage time, a key quantity in
examining the property of the ring network, for both the original and the modified
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Markov chains. In addition, we provide numerical examples to illustrate the conclu-
sions.

It is quite interesting to notice that the ratio of asymmetry r plays an important
role in determining the transient behavior of the ring network, as measured by the
reduction ratio ρ. Specifically, a significant decrease in ρ can be reached when r is
close to 1; as r moves away from 1, however, the decrease in ρ starts to diminish. This
discovery may shed light on real-world networks where asymmetric interaction takes
place, such as those with unbalanced chemical reaction fluxes, traffic flows, energy
transfer rates, and bandwidths. Albeit simplistic and crude, the Markov chain model
may well address some fundamental issues in applications.

Finally, it should be pointed out that our results are developed within the frame-
work of the Markov chain model which is associated with the underlying weighted
digraph. It is an intriguing, and important, question as to how these results may
be interpreted in the context of the small-world phenomenon on the ring network.
Seeking for the answer to this question is a part of our ongoing research.

Acknowledgment. The author is grateful to an anonymous reviewer for con-
structive comments on improving the presentation of the results in this paper.
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