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INTERIOR POINTS OF THE COMPLETELY POSITIVE CONE∗

MIRJAM DÜR† AND GEORG STILL‡

Abstract. A matrix A is called completely positive if it can be decomposed as A = BBT with

an entrywise nonnegative matrix B. The set of all such matrices is a convex cone which plays a role

in certain optimization problems. A characterization of the interior of this cone is provided.
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1. Introduction. A symmetric matrix A is called completely positive if it al-
lows a factorization A = BBT with an entrywise nonnegative matrix B. This class
of matrices has received quite an amount of interest in the linear algebra literature
during the last decades. An excellent survey of this literature is the book [2]. How-
ever, completely positive matrices have recently also attracted some interest in the
mathematical programming community.

Since the 1980s, so called semidefinite relaxations have been proposed as a strong
method to obtain good bounds for many combinatorial optimization problems. A
semidefinite program is an optimization problem where a linear function of a matrix
variable is to be minimized subject to linear constraints and an additional semidefi-
niteness constraint, i.e., one wants to optimize over the cone P of positive semidefinite
matrices. Efficient algorithms called interior point methods have been developed for
this type of problem. For an introduction to semidefinite programming, see [7].

Starting with [3], it has then been observed that some combinatorial problems
like the maximum clique problem can equivalently be reformulated as optimization
problems over the cone CP of completely positive matrices. Burer [4] showed the very
general result that every quadratic problem with linear and binary constraints can
be rewritten as such a problem. More precisely, he showed that a quadratic binary
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problem of the form

min xT Qx + 2cT x

s.t. aT
i x = bi (i = 1, . . . , m)

x ≥ 0
xj ∈ {0, 1} (j ∈ B)

(with Q not necessarily positive semidefinite) can equivalently be written as the fol-
lowing linear problem over the cone of completely positive matrices:

min 〈Q, X〉+ 2cT x

s.t. aT
i x = bi (i = 1, . . . , m)

〈aia
T
i , X〉 = b2

i (i = 1, . . . , m)
xj = Xjj (j ∈ B)(
1 x

x X

)
∈ CP.

This is a remarkable result, since it transforms a nonconvex quadratic integer problem
equivalently into a linear problem over a convex cone, i.e., a convex optimization
problem which has no nonglobal local optima. The difficulty, of course, is now in the
cone constraint, whence it is essential to get a better understanding of the cone.

The dual problem of a completely positive program is an optimization problem
over the cone of copositive matrices. Obviously, both problem classes are NP-hard
since they are equivalent to integer programming.

Interior point algorithms have proved to be very efficient for semidefinite prob-
lems. Because of the nonpolynomial complexity of completely positive programs (in
contrast to polynomial complexity of interior point methods for semidefinite pro-
grams) it will not be possible to extend these methods directly to the completely
positive cone. But one might still try to design algorithms which use interior points
for a completely positive program. However, nothing seems to be known about the
structure of the interior of CP. This is what we investigate in this note.

We use the following notation:

S = {A ∈ R
n×n : A = AT }, the cone of symmetric matrices,

N = {A ∈ S : A ≥ 0}, the cone of (entrywise) nonnegative matrices,

P = {A ∈ S : A � 0}, the cone of positive semidefinite matrices,

CP = {B =
∑m

i=1 aia
T
i : ai ≥ 0}, the cone of completely positive matrices,

COP = {A ∈ S : xT Ax ≥ 0 ∀x ≥ 0}, the cone of copositive matrices.
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An equivalent definition is CP = {B = AAT : A ∈ R
n×m, A ≥ 0}. Clearly, the

factorization of a completely positive matrix is not unique.

Obviously, we have the following relations:

CP ⊆ P ∩N and COP ⊇ P +N .

Interestingly, for n×n-matrices of order n ≤ 4, we have equality in the above relations,
whereas for n ≥ 5, both inclusions are strict, cf. [6].

The inner product in S is defined as 〈A, B〉 := trace(AB). For a given cone
K ⊆ S, the dual cone K∗ is defined as

K∗ := {A ∈ S : 〈A, B〉 ≥ 0 for all B ∈ K}.

It can be shown that K = (K∗)∗ if and only if K is a closed convex cone (see for
example [2, Theorem 1.36]). All matrix cones defined above are closed convex cones.
We have

S∗ = {0}, N ∗ = N , P∗ = P , CP∗ = COP , COP∗ = CP.

For a proof of the last two relations see for instance [2, Theorem 2.3].

It is easy to see that int(N ) = {A ∈ S : A > 0} and int(P) = {A ∈ S : A � 0} =
{A = BBT : B ∈ R

n×n nonsingular}. For the dual of a closed convex cone K, it has
been shown in [1, Chapter 1, Section 2] that

int(K∗) = {A ∈ S : 〈A, B〉 > 0 for all B ∈ K \ {0}}. (1.1)

From this relation, it is not difficult to derive a characterization of the interior of COP :
we get

int(COP) = {A ∈ S : xT Ax > 0 for all x ≥ 0, x �= 0},
which says that the interior of COP consists of the so called strictly copositive matrices.

This is a well known result, but as far as we are aware, no analogous result is
known for the cone CP. The next section provides a characterization of its interior.

2. Characterization of the Interior of CP. It follows from the definition
of CP that the inclusion

CP ⊆ P ∩N (2.1)

always holds. From this, we directly conclude

int(CP) ⊆ int(P) ∩ int(N ) = {A ∈ S : A � 0, A > 0}, (2.2)
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which immediately implies the following:

Lemma 2.1. If A ∈ int(CP), then A > 0 and rankA = n.

Moreover, since for n ≤ 4 equality holds in (2.1), we must have

int(CP) = {A ∈ S : A � 0, A > 0} for n ≤ 4.

On the other hand, the fact that for n ≥ 5 the inclusion (2.1) is strict implies that also
the inclusion (2.2) is strict for n ≥ 5. Indeed, if we choose matrices A ∈ (P ∩N ) \ CP
and B ∈ int(P ∩N ), then by convexity,

Xλ := A + λ(B − A) ∈ int(P ∩N ) for all 0 < λ ≤ 1 .

However, since CP is closed, the relation A /∈ CP implies Xλ /∈ CP for λ > 0 small
enough, so that Xλ ∈ int(P ∩N ) \ CP. We also provide a concrete counterexample.

Example 2.2. Take

A =




1 0 0 0 1 1 0 0 1 2
1 1 0 0 0 2 1 0 0 1
0 1 1 0 0 1 2 1 0 0
0 0 1 1 0 0 1 2 1 0
0 0 0 1 1 0 0 1 2 1




⇒ AAT =




8 5 1 1 5
5 8 5 1 1
1 5 8 5 1
1 1 5 8 5
5 1 1 5 8




.

Clearly, AAT > 0 and rankAAT = 5, so AAT ∈ int(P ∩ N ). Nevertheless, there
exists a copositive matrix H such that 〈AAT , H〉 = 0, which, by (1.1), proves that
AAT /∈ int(CP). This matrix is the Horn matrix

H =




1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1




which was introduced by Horn to illustrate that there exist copositive matrices which
are not decomposable as the sum of a positive semidefinite and a nonnegative matrix,
cf. [5]. To see that H is copositive, write

xT Hx = (x1 − x2 + x3 + x4 − x5)2 + 4x2x4 + 4x3(x5 − x4)

= (x1 − x2 + x3 − x4 + x5)2 + 4x2x5 + 4x1(x4 − x5).

The first expression shows that xT Hx ≥ 0 for nonnegative x with x5 ≥ x4, whereas
the second expression shows xT Hx ≥ 0 for nonnegative x with x5 < x4.
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In view of the preceding discussions, to find a characterization of int(CP) for
arbitrary matrix dimensions we have to look for subsets of the cone

{AAT : AAT > 0, A ≥ 0, rankAAT = n}.

The next theorem gives such a characterization. We use the notation [A1|A2] to
describe the matrix whose columns are the columns of A1 augmented with the columns
of A2.

Theorem 2.3. We have:

int(CP) = {AAT : A = [A1|A2] with A1 > 0 nonsingular, A2 ≥ 0}.

Proof. Denote M := {AAT : A = [A1|A2] with A1 > 0 nonsingular, A2 ≥ 0} for
abbreviation.

[M ⊆ int(CP)]: Let B ∈ M. We show that B1 = A1A
T
1 ∈ int(CP). Then, since

CP is a cone, also B = A1A
T
1 + A2A

T
2 ∈ int(CP).

So we only have to show that the statement holds for B = AAT with nonsingular
0 < A ∈ R

n×n. To do so, we choose S ∈ S arbitrarily and prove that for any ε small
enough there exists C ∈ R

n×n, C ≥ 0, such that

AAT + εS = CCT . (2.3)

The relation (2.3) is equivalent to

I + εA−1SA−T = (A−1C)(A−1C)T . (2.4)

We put M := A−1SA−T and note that for small ε the matrix I + εM is positive
definite. It is well-known that by a (symmetric) Gauss elimination algorithm (e.g.
the Cholesky decomposition) any positive definite matrix E can be decomposed as

E = QQT with nonsingular Q.

This transformation Q = Q(E) depends continuously on E. Therefore, since I has
the obvious decomposition I = QQT with Q(I) = I, also I+εM has a decomposition

I + εM = QQT , Q = Q(I + εM) = I + V (ε),

with some matrix V (ε) which tends to the zero matrix as ε → 0. Comparing with
(2.4), we can put A−1C = Q and we finally obtain a representation (2.3) with

C = AQ = A(I + V (ε)) = A + AV (ε) > 0
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for all small ε, which proves M ⊆ int(CP).

[int(CP) ⊆ M]: Let B be an arbitrary matrix in int(CP), and choose some matrix
B �= F ∈ M ⊂ CP. Since CP is a convex cone, we can construct a matrix X ∈ CP
such that B is a strict convex combination of F and X . Indeed, since B ∈ int(CP),
there exists α > 1 such that X := F +α(B−F ) ∈ CP. The last equation is equivalent
to

B = (1− 1
α )F + 1

αX = F̃ + X̃.

Clearly, F̃ = ÃÃT with Ã = [Ã1|Ã2] with Ã1 > 0 nonsingular, Ã2 ≥ 0, and X̃ = Y Y T

for some Y ≥ 0 since X̃ ∈ CP. Consequently,

B = [Ã1|Ã2|Y ][Ã1|Ã2|Y ]T

is a factorization of B with the required properties, whence B ∈ M.
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