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Abstract

We consider several variations of the simultaneous embedding problem
for planar graphs. We begin with a simple proof that not all pairs of planar
graphs have simultaneous geometric embeddings. However, using bends,
pairs of planar graphs can be simultaneously embedded on the O(n2) ×
O(n2) grid, with at most three bends per edge, where n is the number
of vertices. The O(n) time algorithm guarantees that two corresponding
vertices in the graphs are mapped to the same location in the final drawing
and that both the drawings are without crossings.

The special case when both input graphs are trees has several ap-
plications, such as contour tree simplification and evolutionary biology.
We show that if both input graphs are trees, only one bend per edge
is required. The O(n) time algorithm guarantees that both drawings
are crossings-free, corresponding tree vertices are mapped to the same
locations, and all vertices (and bends) are on the O(n2) × O(n2) grid
(O(n3) × O(n3) grid).

For the special case when one of the graphs is a tree and the other
is a path we can find simultaneous embeddings with fixed-edges. That
is, we can guarantee that corresponding vertices are mapped to the same
locations and that corresponding edges are drawn the same way. We
describe an O(n) time algorithm for simultaneous embeddings with fixed-
edges for tree-path pairs with at most one bend per tree-edge and no
bends along path edges, such that all vertices (and bends) are on the
O(n) × O(n2) grid, (O(n2) × O(n3) grid).
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1 Introduction

Traditional problems in graph drawing involve the layout of a single graph,
whereas in simultaneous graph drawing we are concerned with the layout of
multiple related graphs. Embedding planar graphs simultaneously is motivated
by problems in graph thickness and geometric thickness, and applications such as
contour tree simplification and visualization of graphs that evolve through time.
In addition to generalizing the notion of planarity, techniques for simultaneous
embedding of cycles have been used to show that degree-4 graphs have geometric
thickness at most two [12].

In many different settings it is useful to visualize related graphs, that is,
graphs that are defined on the same set of vertices. Software engineering, data-
bases, and social network analysis, are all examples of areas where multiple
relationships on the same set of objects are often studied. In evolutionary bi-
ology, phylogenetic trees are used to visualize the ancestral relationship among
groups of species. Depending on the assumptions made, different algorithms
produce different phylogenetic trees. Klingner and Amenta [18] and Munzner et
al [20] present techniques for visualization of such trees. Comparing the outputs
and determining the most likely evolutionary hypothesis can be difficult if the
drawings of the trees are laid out independently of each other.

Contour trees were proposed by van Kreveld et al [26] for computing isolines
on terrain maps in geographic information systems. Carr, Snoeyink and van de
Panne [6] use contour trees for scientific and medical visualization. Contour tree
simplification applies the ideas of topological persistence to trees and is another
application for simultaneous drawing of trees [5]. Simultaneous embedding tech-
niques are also useful in the visualization of graphs that evolve through time,
for example, in the context of visualization of the evolution of software [9].

Consider the case where a pair of related graphs is given and the goal is
to compare the graphs by visualizing them. When examining a graph the user
constructs a mental view of it, for example, using the positions of the vertices
relative to each other. If drawings for the two graphs are obtained independently,
there would be little correspondence between the two layouts, since the viewer
has no mental map between the two graphs. When viewing multiple graphs the
user has to reconstruct the mental map after examining each graph and our
goal should be to aid the user in this reconstruction while providing a readable
drawing for each graph individually.

In simultaneous graph embedding, the vertices are placed in the exact same
locations in all the graphs. Fixing the vertex positions in all the graphs preserves
the mental map, but at the expense of readability of the individual drawings, if
edges are to be drawn with straight-line segments. With this in mind, in this
paper we consider the problem of drawing planar graphs on the same point-set
using few bends. We describe efficient algorithms for simultaneous drawing of
pairs of general planar graphs on small integer grids. We also describe better
results for pairs of trees and tree-path pairs.
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1.1 Previous Work

Given a single planar graphs, the existence of drawings with straight-line seg-
ments and no crossings is well known [14, 24, 27]. Tutte [25] extended these
results to shown that every 3-connected planar graph has a convex drawing.
These techniques, however, do not guarantee anything about the resolution of
the drawing and thus are not well-suited for automated graph drawing. The
vertex resolution problem was addressed by de Fraysseix, Pach and Pollack [10]
and Schnyder [23] who showed that any n-vertex planar graph can be drawn
with straight-line segments and no crossings using O(n2) area, with vertices
placed at integer grid points.

The problem of simultaneous geometric embedding of two or more graphs
is more recent. It is known that a simultaneous geometric embedding of an n
vertex 3-connected planar graph and its dual can be found in O(n) time using
O(n2) area [13]. Brass et al. [3] describe linear time algorithms for simultane-
ous geometric embeddings of pairs of paths, cycles, and caterpillars, also using
O(n2) area; see Fig. 1. Cappos and Kobourov [4] show how to simultaneously
embed tree-path pairs, such that the tree is drawn without crossings, using one
straight-line segment per edge, and the path is drawn without crossings, using
one circular arc segment per edge.

A related problem is the problem of graph thickness, defined as the min-
imum number of planar subgraphs into which the edges of the graph can be
partitioned; see the survey by Mutzel et al. [21]. If a graph has thickness two
then it can be drawn on two layers such that each layer is without crossings
and the corresponding vertices of different layers are placed in the same loca-
tions. Dillencourt, Eppstein and Hirschberg [11] study the geometric thickness
of graphs, where the edges are required to be straight-line segments. Thus,
if two graphs have a simultaneous geometric embedding, then their union has
geometric thickness two. Similarly, the union of any two planar graphs has
graph thickness two. Duncan et al. [12] use simultaneous geometric embedding
techniques to show that degree-four graphs have geometric thickness two.

While the thickness and simultaneous embedding problems are related, re-
sults from one do not necessarily translate into the other. Bose, Hurtado,
Rivera-Campo and Wood [2] show that the complete convex graph K2n can
be partitioned into n plane spanning trees and moreover, characterize all the
different partitions. In particular, they show that K2n can be partitioned into n
non-crossing paths. However, given n paths, it is not always possible to embed
them simultaneously for n ≥ 3, as shown by Brass et al. [3].

Simultaneous drawing of multiple graphs is also related to the problem of
fixed point-set embedding of planar graphs. Bose [1] and Gritzman et al. [15]
show that if the mapping between the vertices V and the points P is not
fixed, then trees and outer-planar graphs can be drawn without crossings, using
straight-line edges. In the same setting general planar graphs cannot be drawn
without bends. If bends are allowed, Kaufmann and Wiese [17] show that two
bends per edge suffice. However, if the mapping between V and P is predeter-
mined, Pach and Wenger [22] show that O(n) bends per edge are sufficient to
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Figure 1: Two paths simultaneously embedded such that one path is x-monotone
and the other is y-monotone.

guarantee planarity, where n is the number of vertices in the graph. They also
show that this bound on the number bends per edge is tight.

1.2 Our Contributions

Formally, the drawing D of a graph G = (V,E) is a function that maps each
vertex u ∈ V to a distinct point D(u) in the plane, and each edge (u, v) ∈ E to
a simple Jordan curve D(u, v) with endpoints D(u) and D(v). The problem of
simultaneously embedding two planar graphs G1, G2 is the problem of finding
drawings D1, D2 with corresponding vertices of G1 and G2 mapped to the same
points in the plane, such that each drawing has no crossings.

In this paper we study the following three variations of the simultaneous
embedding problem, depending on the way the edges of the graphs are drawn:

Definition 1 Given two planar graphs G1 = (V,E1) and G2 = (V,E2) the
simultaneous geometric embedding of G1 and G2 is the problem of finding plane
straight-line drawings D1 and D2 of G1 and G2, respectively, such that every
vertex is mapped to the same point in the plane in both D1 and D2.

Definition 2 Given two planar graphs G1 = (V,E1) and G2 = (V,E2) the
simultaneous embedding of G1 and G2 with consistent edges is the problem of
finding plane drawings D1 and D2 of G1 and G2, respectively, such that every
vertex is mapped to the same point in the plane in both D1 and D2 and every
shared edge e ∈ E1 ∩E2 is represented with the same simple open Jordan curve
in D1 and D2.

Definition 3 Given two planar graphs G1 = (V,E1) and G2 = (V,E2) the
simultaneous embedding of G1 and G2 is the problem of finding plane drawings
D1 and D2 of G1 and G2, respectively, such that every vertex is mapped to the
same point in the plane in both D1 and D2.

The definitions are inclusive in the given order: simultaneous geometric
embedding is a special case of simultaneous embedding with consistent edges,
which is in turn a special case of simultaneous embedding.
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Figure 2: The union of the graph on the left and the graph on the right is K5,
but the middle drawing shows a simultaneous geometric embedding of the two
graphs

In Section 2 we begin with a simple proof that not all pairs of planar graphs
have a simultaneous geometric embedding. Next, we present an O(n) time
algorithm for the simultaneous embedding of pairs of planar graphs on the
O(n2)×O(n2) grid, with at most three bends per edge, where n is the number
of vertices. If bend-vertices are placed on grid points then the O(n3) × O(n3)
grid suffices.

In Section 3 we show that if both the input graphs are trees, only one bend
per edge is required. The linear time and area bounds still apply. We also
describe an O(n) time algorithm for simultaneous embeddings with consistent
edges for tree-path pairs. The algorithm places the vertices (and the bend-
points) on the O(n)×O(n2) grid (O(n2)×O(n3) grid) and there is at most one
bend per tree-edge and no bends along the path edges.

In Section 4 we briefly discuss the implementation of these algorithms, show
some of the resulting layouts, and conclude with several open problems.

2 Simultaneous Embeddings

Simultaneous geometric embeddings are easy to find on small integer grids for
pairs of simple graphs such as paths, cycles, and caterpillars [3]. A common
method for simultaneous embedding of such graph pairs is to determine an
ordering for the vertices in each graph, and then place the vertices such that
the locations of the vertices appearing in the determined ordering are increasing
monotonically in some direction in the plane. This method is illustrated for the
case when both graphs are paths in Fig. 1.

For pairs of general planar graphs, and even for pairs of outer-planar graphs,
simultaneous geometric embeddings do not always exist. This is the main moti-
vation for relaxing the conditions of simultaneous geometric embeddings, to just
simultaneous embeddings, by dropping the straight-line edge constraint. Under
these weaker constraints, we can obtain simultaneous drawings with few bends
per edge. Such drawings are also useful for pairs of trees, as it is not known
whether the simultaneous geometric embedding of pairs of trees is always pos-
sible.
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Figure 3: A planar graph G and a path P that do not allow a simultaneous
geometric embedding.

2.1 Simultaneous Geometric Embeddings

While it may be tempting to say that if the union of two graphs contains a
subdivision of K5 or K3,3 then the two graphs have no simultaneous geometric
embedding, this is not the case; see Fig. 2. In fact, while planarity testing for
a single graph can be done in linear time [16], the complexity of determining
whether a pair of planar graphs admits a simultaneous geometric embedding is
not known.

However, it is known that there exist pairs of planar graphs that cannot be
simultaneously embedded [3]. Here we briefly describe a simple case of a pair
of planar graphs that do not admit a simultaneous geometric embedding.

Theorem 1 There exist a planar graph G and a path P , such that there is no
simultaneous geometric embedding of G and P .

Proof: Consider graph G and path P as shown in Fig. 3. Let G′ be the
subgraph of G induced on vertices {1, 2, 3, 4, 5}, and G′′ be the subgraph of G
induced on vertices {5, 6, 7, 8, 9}. Since G is 3-connected fixing the outer face
fixes an embedding for G. With the given outer face of G, the path P contains
two crossings: one involving (4, 5), and the other one involving (8, 9). Graph
G′ has six faces and unless we change the outer face of G′ such that it contains
the edge (1, 2) or (2, 3), the edge (4, 5) is involved in a crossing in the path.
Similarly for G′′, unless we change its outer face such that it contains (5, 6) or
(6, 7), the edge (8, 9) is involved in a crossing in the path. However G′ and
G′′ do not share any faces and removing both crossings depends on taking two
different outer faces, which is impossible. Thus, regardless of the choice for the
outer face of G, path P contains a crossing. �

2.2 Relaxing the Constraints

While some classes of planar graphs allow simultaneous geometric embeddings,
there are other classes that do not, and still others for which it is not known
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whether simultaneous geometric embeddings exist. Since the latter two cate-
gories contain a large number of planar graph classes (trees, outer-planar graphs,
general planar graphs), it is natural to look for simultaneous drawings with
weaker constraints. One possible solution for larger classes of graphs is to relax
the constraints on the edges. Instead of restricting the edges to be straight-line
segments we allow each edge to be drawn as a sequence of straight-line segments.
Recall that such embeddings are called simultaneous embeddings (rather than
simultaneous geometric embeddings).

Note that it is always possible to find a simultaneous embedding of any two
planar graphs, if we are willing to accept a large number of bends per edge.
Given a point-set P of size n in the plane and a planar graph G with n vertices,
together with a one-to-one mapping between the vertices of G and the points in
P , we can find drawings of G on P using edges with bends and no crossings [22].
This allows us to embed any number of planar graphs simultaneously. However,
the resulting drawings contain O(n) bends per edge. Next, we describe methods
to simultaneously embed any two planar graphs so that each edge has at most
three bends.

2.3 Simultaneous Embedding with Few Bends

Since in this version of the problem we no longer insist on straight-line edges,
the problem of simultaneously embedding two graphs boils down to finding a
point-set in the plane and a mapping between the vertices and the points, with
as few bends per edge as possible. The following theorem summarizes our results
for pairs of general planar graphs.

Theorem 2 Given two planar graphs G1 and G2 on the same vertex set, we
can simultaneously embed G1 and G2 using at most three bends per edge. The
resulting drawing requires an integer grid of size O(n2) × O(n2) such that each
vertex is placed on a grid point, and the algorithm requires O(n) time, where n
is the number of vertices.

Proof: Initially, we assume the input graphs are 4-connected. We show how to
remove this assumption using the technique of Kaufmann and Wiese [17] later
in the proof.

Vertex Placement: Assuming that the graphs G1 and G2 are 4-connected,
we place the vertices in a monotonically increasing x and y order, similar to
that of Brass et al [3].

First we find a Hamiltonian cycle H1 of G1 and a Hamiltonian cycle H2 of
G2. We can do this in linear time using the algorithm of Chiba and Nishizeki [8].
Starting at an arbitrary vertex in H1 we traverse its vertices, assigning increasing
x–coordinates to each vertex visited. Starting at a random vertex in H2 we
traverse its vertices, assigning increasing y–coordinates to each vertex visited.
Not considering the final edges enclosing the cycles, this gives us an x–monotone
path for H1 and a y–monotone path for H2; see Fig. 4(a).
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Figure 4: (a) H1 and H2 drawn simultaneously. (b) Only the edges of G1 are
shown. The edges inside the Hamiltonian cycle H1 have the same slope as the
outermost edge and go inside the cycle. Similarly the edges outside the cycle in
the embedding are drawn outside the cycle.

Since both paths are monotone, the edges of each paths do not intersect.
Let δ be the largest slope of the edges on the path defined by H1. We complete
the drawing of the cycle H1 by drawing the final edge between the leftmost
vertex and the rightmost vertex. It is drawn with two segments such that the
slope of the initial segment starting at the leftmost vertex is δ′ and the slope of
the second segment ending at the rightmost vertex is −δ′, where δ′ is slightly
larger than δ. Since G1 is Hamiltonian, the cycle H1 divides the edges into two
groups: inside and outside edges (with respect to H1). Then each of the inside
edges is drawn with two line segments with slopes δ′ and −δ′ on the inside of
H1. Similarly, the outside edges are drawn with the same slopes on the outside
of H1; see Fig. 4(b).

The edges of G2 are handled in the same way with respect to H2. It is
easy to see that the vertex set requires grid size n × n. The overall area of the
drawing is larger, as the bend points lie outside the original grid. Since δ′ ≤ n,
the horizontal and vertical distance between a bend point and the two endpoints
is at most n2. Thus the entire drawing fits inside an O(n2) × O(n2) grid.

Making the Graphs 4-connected: For the case when the input graphs are not
4-connected, we use the techniques introduced in [17] to augment them. Given
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Figure 5: Removing separating triangles: (a) Edge e is part of the separating
triangle (u, v, w). The two faces containing e are (u, v, s) and (u, v, t). (b) The
separating triangle is removed by deleting e, introducing z and connecting it to
u, v, s, and t.

a planar graph we first fully triangulate it by adding extra edges if necessary.
Next we make the graph 4-connected by introducing new vertices. This is done
by removing all the separating triangles in G, where a separating triangle is a
cycle of length 3 such that the removal of the vertices of the cycle disconnects
G. Separating triangles of G can be easily found by another algorithm of Chiba
and Nishizeki [7]. Let e = (u, v) be an edge of a separating triangle in G such
that e is adjacent to the faces (u, v, s) and (u, v, t); see Fig. 5. We remove
the separating triangle by inserting a dummy vertex z on e, deleting the edge e,
and introducing four new edges: (u, z), (v, z), (s, z), (t, z). The newly introduced
vertex z is not part of any separating triangle, so each time we introduce such a
vertex we decrease the number of separating triangles. Doing the same operation
on all the separating triangles gives us a 4-connected planar graph.

Once G1 and G2 have been augmented to 4-connected graphs, we obtain the
Hamiltonian cycles H1 and H2 of G1 and G2. We augment the edges of H2 with
the extra vertices of G1, and augment the edges of H1 with the extra vertices of
G2. The placement of the Hamiltonian cycles and the drawing of the remaining
edges is done as before. After finishing the placement, we treat the dummy
vertices as bend points and ignore the edges inserted in the augmentation phase.
As a result, an edge e = (u, v) that got split with a dummy vertex z ends up
having at most three bend points: one between u and z, one at the location
of z, and finally one between v and z. As there are O(n) dummy vertices, the
bounds for the integer grid remain unchanged.

Running Time: The two non-trivial operations are finding the separating
triangles and finding the Hamiltonian cycles. Finding the separating triangles
and making the graphs 4-connected takes linear time [7]. A Hamiltonian cycle
in a 4-connected planar graph can also be found in linear time [8]. �
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The corollary below follows from the above theorem by fixing the slopes of
all the edges and refining the grid.

Corollary 3 Given two planar graphs G1 and G2 on the same vertex set, we
can simultaneously embed G1 and G2 using at most three bends per edge on
an integer grid of size O(n3) × O(n3), with all the vertices and bend-points at
grid-points.

Proof: Consider the original n × n grid where H1 and H2 are placed. Let the
slope δ = n, where δ and −δ are the slopes of all edge segments among edges
drawn with bends. Let e = (u, v) ∈ G1 such that u is placed to the left of v
and e is drawn with a bend point p. Let xdist, ydist be the x-coordinate and
y-coordinate distances between u and v. The x-coordinate distance between u
and the point p is (n × xdist − ydist)/2n. If we place a 2n × 2n grid inside each
unit square of the original grid, then the x-coordinate distance between u and p
is an integer. Since the slope of the segment up is n, the y-coordinate distance
between u and p is also an integer, and p is on a grid point. Similar argument
applies to the edges of G2 as well. The final grid area is O(n3) × O(n3). �

3 Simultaneous Embeddings for Trees and Paths

The special case when the input graphs are trees has several applications, such
as contour tree simplification and evolutionary trees. The generic algorithm
from the previous section can be modified to simultaneously embed tree-tree
pairs and tree-path using fewer bends. For the case of tree-tree pairs we show
that only one bend per edge is needed. For the case when one of the trees is a
path, we can do even better, by guaranteeing that path edges have no bends at
all.

3.1 Tree-Tree Pairs

The theorem below follows from Theorem 2 and the above corollary.

Theorem 4 Given two trees T1 and T2 on the same vertex set, they can be
simultaneously embedded in linear time, using at most one bend per edge, on an
integer grid of size O(n2) × O(n2) (or O(n3) × O(n3), if both the vertices and
bend-points are on grid points).

Proof: We first show that we can augment the two trees to Hamiltonian planar
graphs with Hamiltonian cycles H1,H2, respectively. Since we do not introduce
any new vertices in the augmentation stage, the number of bends required will
be at most one per tree edge. The placement of the vertices is the same as that
in Theorem 2 and Corollary 3 to obtain the O(n2)×O(n2) and O(n3)×O(n3),
respectively.

Given a tree T we show how to construct HT using a recursive divide-and-
conquer procedure: the input to the recursive call is a subtree T and the output
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Figure 6: Constructing the Hamiltonian cycle HT from Hi and Hj . Dark edges
are tree edges and the others are augmentation edges. We add the tree edge
e = (u, v) and the edge (unew, vnew) (for the initial case where Ti and Tj are
singletons the augmentation edge is parallel to e) to obtain T ′.

is the Hamiltonian cycle HT and the modified graph T ′. We augment the tree
T with edges until the resulting graph T ′ has a Hamiltonian cycle HT . The
base case for the recursion is a tree with just one node, T = {u}. In this case,
let HT = (u, u), and T ′ = T . For all other cases, we take an arbitrary edge
e = (u, v) from T . Let Ti, Tj be the two trees obtained after the removal of e
from T . Assume we can construct Hamiltonian cycles Hi and Hj of Ti and Tj ,
respectively. Let Ti

′ and Tj
′ be the graphs that we get after these constructions,

corresponding to Ti and Tj , respectively. We merge the two subgraphs into the
new graph T ′ = Ti

′ ∪ Tj
′ by adding e to T ′.

In order to combine the Hamiltonian cycles of the two subgraphs into a
Hamiltonian cycle for union, we need to add one more edge between the two
subgraphs. We add an edge between a neighbor unew of u to a neighbor vnew of
v and combine the two cycles by dropping the edges (u, unew) and (v, vnew) if
they exist. Note that if we have two parallel edges to be dropped we drop only
one of them.

Let Hi = (u,w1, w2, . . . , wn, u) and Hj = (v, w1
′, w2

′, . . . , wm
′, v). If Ti

′

has only one vertex u we assign unew = u, and if it has two vertices u and
u′ we assign unew = u′. We do similar assignments for vnew if Tj

′ has one
or two vertices. In order to find unew, vnew for all other cases, we can pick
w1 or wn as unew and w1

′ or wm
′ as vnew. Without loss of generality, let

unew = w1 and vnew = w1
′. Then the new Hamiltonian cycle becomes, HT =

(u, v, w′
m, w′

m−1, . . . , w
′
1, w1, w2, . . . , wn, u); see Fig. 6.

Planarity: The above recursive procedure augments the tree T to a graph
T ′ that has a Hamiltonian cycle. We still need to show that the resulting graph
T ′ is planar. Recall the recursive procedure above and let us assume that Ti

′

and Tj
′ are planar. Then there exists a planar embedding for Ti

′ so that the
edge (u,w1) is on the outer face and a planar embedding for Tj

′ so that the
edge (v, w1

′) is on the outer face. Since all the vertices u,w1, v, w1
′ are on the

outer faces of their graphs, the inserted edges (u, v) and (w1, w1
′) do not have

any crossings with the edges of Ti
′ and Tj

′. The resulting graph T ′ is planar,
and the resulting embedding is a planar embedding.
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Running Time: We only need to show that the Hamiltonian cycle construc-
tion takes linear time, since the rest of the algorithm is the same as the one
described in Theorem 2. Note that we do not have to explicitly find planar
embeddings of Ti

′ and Tj
′ at each level of the recursion. The planar embedding

of the final graph T ′ suffices. We can find the planar embedding of T ′ in linear
time[16]. The merging of the two Hamiltonian cycles requires constant number
of operations at each recursive step and thus the overall running time of the
algorithm is O(n). �

3.2 Tree-Path Pairs with Consistent Edges

Note that although the algorithm for tree-tree pairs simultaneously embeds two
trees with the corresponding vertices mapped on the same positions (preserves
the mental map for the vertex set), there is a significant drawback in terms of
the mental map of the edges. In particular, edges common to both graphs are
drawn differently in the two drawings unless they happen to be on the paths
defined by the Hamiltonian cycles. Simultaneous embeddings with consistent
edges requires that shared edges be represented the same way in both drawings.
We describe an algorithm for simultaneous embedding with consistent edges for
a tree and a path below.

Theorem 5 Given a tree T and a path P on the same vertex set, they can be
simultaneously embedded with consistent edges in linear time, using at most one
bend per edge, on an integer grid of size O(n) × O(n2) (or O(n2) × O(n3), if
both the vertices and bend-points are on the grid).

Proof: The main idea is the same as that in Theorem 4, except that we ensure
that the edges common to both T and P are in the Hamiltonian cycle for
the tree. Then the path and the Hamiltonian cycle (minus an edge) have a
simultaneous geometric embedding. The rest of the tree edges are routed as
before, thus yielding a simultaneous embedding with consistent edges for T and
P .

Let ET,P be the set of edges common to both T and P . In order to obtain a
Hamiltonian cycle for the tree T similar to the construction in Theorem 4, we
augment it with edges until the resulting graph T ′ has a Hamiltonian cycle HT .
This time we make sure that HT contains all edges that are in common with
the path. Again the base case for the recursion is a tree with just one node,
T = {u}. In this case, let HT = (u, u), and T ′ = T . For all other cases, we
take an edge e = (u, v) ∈ ET,P from T if such an edge exists. If not, we take
an arbitrary edge e = (u, v) ∈ T . Let Ti, Tj be the two trees obtained after
the removal of e from T . Assume we can construct Hamiltonian cycles Hi and
Hj of Ti and Tj , respectively. Let Ti

′ and Tj
′ be the graphs that we get after

these constructions, corresponding to Ti and Tj , respectively. We merge the two
subgraphs into the new graph T ′ = Ti

′ ∪ Tj
′ by adding e to T ′.

In order to combine the Hamiltonian cycles of the two subgraphs into a
Hamiltonian cycle for union, we need to add one more edge between the two
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wm
′wn

u v

w1 w1
′

e
Hi Hj

Figure 7: Constructing the Hamiltonian cycle HT from Hi and Hj . The dark
edges belong to the path, while the others are tree edges or augmentation edges.
Vertices u and v can be incident to only one path edge in Hi and Hj , respectively.
Without loss of generality, let (u,wn) ∈ ET,P and let (v, wm

′) ∈ ET,P . Then we
insert the edge e = (u, v) and the edge (w1, w1

′) to obtain T ′.

subgraphs. We add an edge between a neighbor unew of u to a neighbor vnew

of v and combine the two cycles by dropping the edges (u, unew) and (v, vnew)
if they exist.

Let Hi = (u,w1, w2, . . . , wn, u) and Hj = (v, w1
′, w2

′, . . . , wm
′, v). If Ti

′ has
only one vertex u we assign unew = u, and if it has two vertices u and u′ we
assign unew = u′. We do similar assignments for vnew if Tj

′ has one or two
vertices. In order to find unew, vnew for all other cases, we check the first and
the last edges of the Hamiltonian cycles.

Assume e = (u, v) /∈ ET,P . Then no edge in Ti, Tj is in ET,P , since an edge
e /∈ ET,P is picked only if there is no edge e ∈ ET,P in the current subgraph.
In this case we assign unew to either w1 or wn arbitrarily. Similar arbitrary
assignment is done for vnew.

Now assume e = (u, v) ∈ ET,P . Since P is a path, either (u,w1) /∈
ET,P , or (u,wn) /∈ ET,P (otherwise, vertex u must have degree greater than
2 in the path). Without loss of generality, assume (u,w1) /∈ ET,P . We as-
sign unew = w1. The same holds for Hj , that is, either (v, w1

′) /∈ ET,P or
(v, wm

′) /∈ ET,P . Without loss of generality, assume (v, w1
′) /∈ ET,P . We assign

vnew = w1
′. As a result of this insertion the new Hamiltonian cycle becomes,

HT = (u, v, wm
′, wm−1

′, . . . , w1
′, w1, w2, . . . , wn, u); see Fig. 7.

Planarity of the new graph T ′ and the running time of the algorithm follow
from the arguments in the proof of Theorem 4. �

4 Conclusion and Future Work

We implemented the algorithms described above using the LEDA library [19] in
C++. Fig. 8 and Fig. 9 show some of the resulting layouts for a path and tree and
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two trees, respectively. Note that when several edges not on the Hamiltonian
cycle leave a vertex, they may all overlap; see edges (1,3), (1,4), and (1,6) on
Fig. 8. This problem can be addressed by perturbing the bend-points as in [17].

All of the algorithms in this paper rely on the approach of augmenting planar
graphs to Hamiltonian planar graphs, so as to obtain simultaneous embeddings.
However, for a simultaneous embedding with consistent edges, this technique
cannot be extended from the tree-path pair case to pairs of trees (and hence
cannot be extended to larger classes of planar graphs). The reason is that two
arbitrary trees cannot always be augmented to graphs with Hamiltonian cycles
that contain all the common edges. Thus, if we would like to represent the
common vertices and edges the same way for both graphs, different techniques
are needed.

Several problems regarding simultaneous embeddings remain open:

• Given a pair of trees, is it always possible to find a simultaneous geometric
embedding?

• Given a tree-path pair, is it always possible to find a simultaneous geo-
metric embedding?

• Given a pair of trees, is it always possible to find a simultaneous embedding
with consistent edges such that the number of bends is a small constant?

• Given a pair of planar graphs, what is the complexity of determining
whether they admit a simultaneous geometric embedding?
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Figure 8: A simultaneous embedding with consistent edges for a tree and a
path. The path (0, 1, . . . , 10) is shown on the top left. The tree is shown on
the bottom left. Note that the path and the tree share the edge (0,1). The
combined view of the tree and the path is shown on the right.
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Figure 9: A simultaneous embedding for two trees. The tree T1 (in blue) consists
of the edges: (5, 6), (3, 6), (3, 7), (7, 0), (7, 1), (1, 2), (0, 4), (4, 8) and the tree T2

(in yellow) consists of the edges: (8, 5), (5, 3), (3, 1), (3, 6), (1, 0), (6, 4), (6, 7),
(6, 2).
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