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SQUARE-ROOT FAMILIES FOR THE
SIMULTANEOUS APPROXIMATION OF

POLYNOMIAL MULTIPLE ZEROS

Lidija Z. Rančić1, Miodrag S. Petković2

Abstract. One-parameter families of iterative methods for the simulta-
neous determination of multiple complex zeros of a polynomial are con-
sidered. Acceleration of convergence is performed by using Newton’s and
Halley’s corrections for a multiple zero. It is shown that the convergence
order of the constructed total-step methods is five and six, respectively.
By applying the Gauss-Seidel approach, further improvements of these
methods are obtained. The lower bounds of the R-order of convergence of
the improved (single-step) methods are derived. Accelerated convergence
of all proposed methods is attained with negligible number of additional
operations, which provides a high computational efficiency of these meth-
ods. Convergence analysis and numerical results are given.
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1. Square-root families for multiple zeros

In this paper we give new high-order families of iterative methods for the
simultaneous determination of all multiple (real or complex) zeros of a polyno-
mial. The improved methods with accelerated convergence are constructed by
using suitable corrections. They have a high computational efficiency since the
accelerated convergence is attained with only negligible number of additional
numerical operations. Convergence analysis of the proposed methods and nu-
merical examples are given.

Let P be a monic polynomial of degree n ≥ 3 with the zeros ζ1, . . . , ζν of
the multiplicities µ1, . . . , µν (µ1 + · · · + µν = n, 1 < ν ≤ n) and let z1, . . . , zν

be their mutually distinct approximations. The determination of the order of
multiplicity is not considered here; efficient multiplicity-finding algorithms may
be found, for instance, in [2] and [3]. For the point z = zi (i ∈ Iν := {1, . . . , ν})
let us introduce the notations:

Σλ,i =
ν∑

j=1
j 6=i

µj

(zi − ζj)λ
, Sλ,i =

ν∑
j=1
j 6=i

µj

(zi − zj)λ
(λ = 1, 2),
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δ1,i =
P ′(zi)
P (zi)

, δ2,i =
P ′(zi)2 − P (zi)P ′′(zi)

P (zi)2

f∗i = µi(α + 1)Σ2,i − α(α + 1)Σ2
1,i,(1)

fi = µi(α + 1)S2,i − α(α + 1)S2
1,i(2)

εi = zi − ζi, ε = max
1≤i≤ν

|εi|.

Starting from the identities

δ1,i =
P ′(zi)
P (zi)

=
ν∑

j=1

µj

zi − ζj
=

µi

zi − ζi
+ Σ1,i(3)

and

δ2,i =
P ′(zi)2 − P (zi)P ′′(zi)

P (zi)2
= −

(
P ′(z)
P (z)

)′∣∣∣∣∣
z=zi

=
ν∑

j=1

µj

(zi − ζj)2

=
µi

(zi − ζi)2
+ Σ2,i,(4)

we come to the identity

µi(α + 1)δ2,i − αδ2
1,i − f∗i =

(µi(α + 1)
εi

− αδ1,i

)2

.(5)

From the identity (5) we derive the following fixed-point relation

ζi = zi −
µi(α + 1)

αδ1,i ±
[
µi(α + 1)δ2,i − αδ2

1,i − f∗i

]1/2
(6)

for i ∈ Iν , assuming that two values of the square root have to be taken in (6).

Let us introduce some abbreviations in a similar way as in [7]:

1◦ The approximations z
(m)
1 , . . . , z

(m)
ν of the zeros at the mth iterative step will

be briefly denoted by z1, . . . , zν , and the new approximations z
(m+1)
1 , . . . , z

(m+1)
ν ,

obtained by some simultaneous iterative method, by ẑ1, . . . , ẑν , respectively;

2◦

Ni = N(zi) =
µi

δ1,i
= µi

P (zi)
P ′(zi)

(Schröder’s correction),(7)

Hi = H(zi) =
[ P ′(zi)
2P (zi)

(
1 +

1
µi

)
− P ′′(zi)

2P ′(zi)

]−1

=
2µiδ1,i

δ2
1,i + µiδ2,i

(Halley’s correction);(8)
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3◦ Sλ,i(a, b) =
i−1∑
j=1

µj

(zi − aj)λ
+

ν∑
j=i+1

µj

(zi − bj)λ
,

fi(a, b) = µi(α + 1)S2,i(a, b)− α(α + 1)S2
1,i(a, b),

where a = (a1, . . . , aν) and b = (b1, . . . , bν) are some vectors of distinct complex
numbers. If a = b = z = (z1, . . . , zν), then we will write Sλ,i(z,z) = Sλ,i and
fi(z,z) = fi as in (1) and (2). We note that N(zi) = µiP (zi)/P ′(zi) is a
correction of Newton’s type introduced by Schröder [8]. Such a notation will be
kept throughout this paper.

4◦ Types of approximations:
z = (z1, . . . , zν) (current approximations),
ẑ = (ẑ1, . . . , ẑν) (new approximations),
zN = (zN,1, . . . , zN,ν), zN,i = zi −N(zi) (Schröder’s approximations),
zH = (zH,1, . . . , zH,ν), zH,i = zi −H(zi) (Halley’s approximations).

The correction terms (7) and (8) appear in the well known iterative formulas

ẑ = z −N(z) (Schröder’s method), and ẑ = z −H(z) (Halley’s method),

for finding a multiple zero, having respectively quadratic and cubic convergence.

5◦ The abbreviations TS and SS stand for the total-step methods (“Jacobi” or
parallel mode) and single-step methods (serial or “Gauss-Seidel” mode).

Taking certain approximations zj of ζj on the right-hand side of the fixed
point relation (6), on the left side we will obtain a new approximation ẑi to the
zero ζi instead of ζi. In this way we are able to construct some modified iterative
processes for the simultaneous determination of multiple zeros of a polynomial.

First, for i ∈ Iν , we will state total-step methods:

Basic total-step method (TS):

ẑi = zi −
µi(α + 1)

αδ1,i +
[
µi(α + 1)δ2,i − αδ2

1,i − fi(z,z)
]1/2

∗

. (TS)

Total-step method with Newton’s correction (TSN):

ẑi = zi −
µi(α + 1)

αδ1,i +
[
µi(α + 1)δ2,i − αδ2

1,i − fi(zN ,zN )
]1/2

∗

. (TSN)

Total-step method with Halley’s correction (TSH):

ẑi = zi −
µi(α + 1)

αδ1,i +
[
µi(α + 1)δ2,i − αδ2

1,i − fi(zH ,zH)
]1/2

∗

. (TSH)
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The order of convergence of each of the three aforementioned total-step meth-
ods can be increased using any new approximation as soon as it is calculated.
In this manner, for i ∈ Iν , we construct the following single-step methods for
multiple zeros:

Basic single-step method (SS):

ẑi = zi −
µi(α + 1)

αδ1,i +
[
µi(α + 1)δ2,i − αδ2

1,i − fi(ẑ,z)
]1/2

∗

. (SS)

Single-step method with Newton’s correction (SSN):

ẑi = zi −
µi(α + 1)

αδ1,i +
[
µi(α + 1)δ2,i − αδ2

1,i − fi(ẑ,zN )
]1/2

∗

. (SSN)

Single-step method with Halley’s correction (SSH):

ẑi = zi −
µi(α + 1)

αδ1,i +
[
µi(α + 1)δ2,i − αδ2

1,i − fi(ẑ,zH)
]1/2

∗

. (SSH)

Remark 1. It is assumed that two values of the (complex) square root have to
be taken in the above iterative formulas. Considering the fixed point relation
(6) and all modified methods of presented family given above, we observe that
a “proper” sign in front of the square root has to be chosen. We choose the
sign so that a smaller step |ẑi − zi| is taken. We use the symbol ∗ in the above
families of methods to indicate the choice of the proper value of the square root
involved in the presented iterative formulas.

For some specific values of the parameter α, from the families of methods
listed above we obtain special cases of these families as Ostrowski-like method
(α = 0), Laguerre-like method (α = µi/(n − µi)), Euler-like method (α = 1)
and Halley-like method (α = −1). The names come from the similarity with the
quoted classical methods. Indeed, omitting the sums S1,i and S2,i in the above
formulas, we obtain the corresponding well known classical methods.

2. Convergence analysis

Studying the convergence analysis of the total-step methods (TS), (TSN)
and (TSH), we will consider all three methods simultaneously. The same is
valid for the single-step methods (SS), (SSN) and (SSH). For this purpose we
denote these methods with the additional indices 1 (for (TS) and (SS)), 2 (for
(TSN) and (SSN)) and 3 (for (TSH) and (SSH)), and, in the same manner, we
denote the corresponding vectors of approximations as follows:

z(1) = z = (z1, . . . , zν),
z(2) = zN = (zN,1, . . . , zN,ν),

z(3) = zH = (zH,1, . . . , zH,ν).
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Now we are in possibility to rewrite all the mentioned total-step methods, de-
noted with (TS(k)) (k = 1, 2, 3), in the unique form as

ẑi = zi −
µi(α + 1)

αδ1,i +
[
µi(α + 1)δ2,i − αδ2

1,i − fi(z(k),z(k))
]1/2

∗

, (TS(k))

for i ∈ Iν , k = 1, 2, 3 and α 6= −1. Using the above notation for the arguments
of fi, the single-step methods (SS), (SSN) and (SSH), denoted commonly with
(SS(k)), can be written in the unique form

ẑi = zi −
µi(α + 1)

αδ1,i +
[
µi(α + 1)δ2,i − αδ2

1,i − fi(ẑ,z(k))
]1/2

∗

(SS(k))

where i ∈ Iν , k = 1, 2, 3 and α 6= −1.
In a particular case α = µi/(n−µi), from the iterative formulas (TS(k)) and

(SS(k)) we obtain Laguerre-like methods considered in [6].
We will always assume that α 6= −1 in all iterative formulas presented above.

If α = −1, then, applying a limiting operation we obtain the methods of Halley’s
type

ẑi = zi −
2µiδ1,i

δ2
1,i + µiδ2,i − S2

1,i(z(k),z(k))− µiS2,i(z(k),z(k))
,

for i ∈ Iν and k = 1, 2, 3, whose basic variant and some improvements were
considered in [9].

To avoid any confusion, we emphasize that, in the situation when the it-
eration index is omitted, the superscript k denotes the corresponding method.
Following this notation we introduce the corrections ∆k,i (k = 1, 2, 3) by

∆1,i = 0, ∆2,i = Ni, ∆3,i = Hi.

Let us introduce the notations

d = min
i,j
i6=j

|ζi − ζj |, q =
4n

d

and assume that the conditions

|εi| <
d

4n
=

1
q

(i = 1, . . . , ν)(9)

are fulfilled. In what follows, we will always assume that 2 ≤ ν ≤ n, n ≥ 3 and
α 6= −1. Also, in our convergence analysis we will deal with the parameter α
lying in the disk |z| < 2.4 centered at the origin (that is, |α| < 2.4).

Lemma 1 L̇et z1 . . . , zν be distinct approximations to the zeros ζ1, . . . , ζν , and
let εi = zi − ζi, ε̂i = ẑi − ζi, where ẑ1, . . . , ẑν are approximations produced by
the iterative methods TS(k). If (9) holds and |α| < 2.4 ∧ α 6= −1, then
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(i) |ε̂i| ≤
qk+2

n− 1
|εi|3

∑
j 6=i

µj |εj |k (i ∈ Iν ; k = 1, 2, 3);

(ii) |ε̂i| <
d

4n
=

1
q

(i = 1, . . . , ν).

The proof of Lemma 1 is extensive and tedious but elementary, and will be
omitted to save space. The reader interested in this providing technique may
find it in [6]

Assume that z
(0)
1 , . . . , z

(0)
ν are reasonably close approximations to the zeros

ζ1, . . . , ζν of the polynomial P, and let

ε
(m)
i = z

(m)
i − ζi, ε(m) = max

1≤i≤ν
|ε(m)

i |,

where z
(m)
1 , . . . , z

(m)
ν are approximations produced in the mth iterative step.

Suppose that the initial conditions

|ε(0)
i | < d

4n
=

1
q

(i = 1, . . . , ν)(10)

hold. Now, using the results presented in the previous section we will estimate
the convergence rate of the total-step methods (TS(k)). The proof is derived
under the condition (10), which means that a local convergence of these methods
is assumed.

Theorem 1. If the conditions (10) hold, the total-step methods (TS(k)) are
convergent with the convergence order equal to k + 3 (k = 1, 2, 3).

Proof. The proof goes by induction. The relation (i) of Lemma 1 was derived
under the condition (9). In the same manner, assuming that the condition (10)
is valid, we estimate

|ε(1)
i | ≤ qk+2

n− 1
|ε(0)

i |3
∑
j 6=i

µj |ε(0)
j |k <

1
q

(i ∈ Iν ; k = 1, 2, 3).

This means that we have that the implication

|ε(0)
i | < d

4n
=

1
q

⇒ |ε(1)
i | < d

4n
=

1
q

is valid. Now, we will prove that the condition (10) implies

|ε(m+1)
i | < qk+2

n− 1
|ε(m)

i |3
∑
j 6=i

µj |ε(m)
j |k <

1
q

(11)

for each m = 0, 1, . . ., k = 1, 2, 3 and i = 1, . . . , ν. Substituting |ε(m)
i | = t

(m)
i /q

in (11), we obtain

t
(m+1)
i <

(
t
(m)
i

)3
n− 1

∑
j 6=i

µj

(
t
(m)
j

)k (i ∈ Iν ; k = 1, 2, 3).(12)
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Taking t(m) = max
1≤i≤ν

t
(m)
i , then by (10) we get

q|ε(0)
i | = t

(0)
i ≤ t(0) < 1, (i ∈ Iν).

In regard to the last inequality and from (12) we obtain t
(m)
i < 1 for all i =

1, . . . , ν and m = 1, 2, . . . . According to this we obtain from (12)

t
(m+1)
i <

(
t
(m)
i

)3
n− 1

(n− µi)
(
t(m)

)k ≤ (t(m)
)k+3

,(13)

(k = 1, 2, 3), and conclude that the sequences {t(m)
i } (i ∈ Iν) converge to 0.

Consequently, the sequences {|ε(m)
i |} are also convergent, which means that

z
(m)
i → ζi (i ∈ Iν). Finally, from (13) we may conclude that the total-step meth-

ods (TS(k)) have the convergence order k + 3, that is, the total-step methods
(TS) (k = 1), (TSN) (k = 2) and (TSH) (k = 3) have the order of convergence
four, five and six, respectively. 2

Let us consider now the convergence rate of the single-step methods. Starting
from the initial conditions (10), we can prove that the inequalities

|ε(m+1)
i | <

qk+2

n− 1
|ε(m)

i |3
(

i−1∑
j=1

µj |ε(m+1)
j |+ qk−1

ν∑
j=i+1

µj |ε(m)
j |k

)

<
1
q
, (k = 1, 2, 3)(14)

hold for each m = 0, 1, . . . and i = 1, . . . , ν, assuming that for i = 1 the first
sum in (14) is neglected. Substituting |ε(m)

i | = t
(m)
i /q in (14), we obtain

t
(m+1)
i <

(
t
(m)
i

)3
n− 1

(
i−1∑
j=1

µjt
(m+1)
j +

ν∑
j=i+1

µj

(
t
(m)
j

)k)
,(15)

for i ∈ Iν and k = 1, 2, 3. The derivation of the inequalities (14) is essentially
the same as that given above for the total-step methods. For this reason our
main attention will be devoted to the precise estimation of the convergence rate
of the single-step methods (SS(k)). This convergence analysis, similar to that
presented by Alefeld and Herzberger [1] (see, also, [5]), uses the notion of the
R-order of convergence introduced by Ortega and Rheinboldt [4]. The R-order
of an iterative method IM with the limit point ζ will be denoted by OR((IM),
ζ).

Theorem 2. Assume that the initial conditions (10) hold. Then the R-order
of convergence of the single-step methods (SS(k)), for which the relations (14)
are valid, is given by

OR((SS(k)), ζ) ≥ 3 + xν(k),
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where xν(k) > k is the unique positive root of the equation

xν − kν−1x− 3kν−1 = 0.

Proof. As in the proof of Theorem 1, we first note that from the inequality
(10) it follows

|ε(0)
i |q = t

(0)
i ≤ t = max

1≤i≤ν
t
(0)
i < 1.(16)

In view of this we conclude from (15) that the sequences {t(m)
i } and {|ε(m)

i |}
tend to 0 for all i = 1, . . . , ν, which means that z

(m)
i → ζi (i ∈ Iν).

Following Alefeld and Herzberger [1], from the relations (15) and (16) we
derive

t
(m+1)
i ≤ tr

(m)
i (i = 1, . . . , ν; m = 0, 1, . . .).

The column vectors r(m) = [r(m)
1 · · · r(m)

ν ]T are successively computed by

r(m+1) = Aν(k) r(m)(17)

starting with r(0) = [1 · · · 1]T . The ν × ν matrix Aν(k) in (17) is given by

Aν(k) =



3 k
3 k O

3 k
. . . . . .

O
3 k

3 k 0 0 · · · 0 3


(k = 1, 2, 3)

(see [5, Sec. 2.3] for the more general case). The characteristic polynomial of
the matrix Aν(k) is

gν(λ) = (λ− 3)ν − (λ− 3)kν−1 − 3kν−1.

Substituting x = λ− 3, we get

φν(x) = gν(x + 3) = xν − kν−1x− 3kν−1.

The function φν(x) is monotonically increasing for x > xs = k/(ν1/(ν−1)) and
decreasing for x < xs. In addition,

φν(xs) < 0, φν(0) = φν(k) = −3kν−1 < 0, φν(k + 1) > 0.

From these data we conclude that the equation

xν − kν−1x− 3kν−1 = 0(18)

has a unique positive root in the interval (k, k+1). The corresponding (positive)
eigenvalue of the matrix Aν(k) is 3+xν(k). The matrix Aν(k) is irreducible and
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primitive, so that it has the unique positive eigenvalue equal to its spectral
radius ρ(Aν(k)). According to the analysis presented in [1] it can be shown
that the lower bound of the R-order of iterative method (SS(k)), for which the
inequalities (15) are valid, is given by the spectral radius ρ(Aν(k)). Therefore,
we have

OR((SS(k)), ζ) ≥ ρ(Aν(k)) = 3 + xν(k),

where xν(k) > k is the unique positive root of the equation (18). 2

The lower bounds of OR((SS), ζ), OR((SSN), ζ) and OR((SSH), ζ), ob-
tained by solving the equation (18), are tabulated for ν = 3(1)10 in Table
1.

Methods \ ν 3 4 5 6 7 8 9 very large ν
(SS): 4.672 4.453 4.341 4.274 4.229 4.196 4.172 → 4

(SSN): 5.862 5.586 5.443 5.357 5.299 5.257 5.225 → 5
(SSH): 6.974 6.662 6.503 6.404 6.339 6.291 6.255 → 6

Table 1 The lower bound of the R-order of convergence

3. Numerical results

To demonstrate the convergence speed of the proposed simultaneous meth-
ods, we tested a lot of polynomial equations. In this section we give some
selected examples chosen among many numerical experiments. The correspond-
ing algorithms were realized using the programming package Mathematica 5
on PC PENTIUM IV. In order to save all significant digits of the obtained
approximations, we employed multiple precision arithmetic.

The proposed total step as well as single step methods with the Schröder
and Halley corrections use the already calculated values P , P ′, P ′′ at the points
z1, . . . , zν so that the convergence speed of the implemented iterative methods is
accelerated with the negligible number of additional operations. In this manner
a very high computational efficiency of the proposed methods is provided, which
is the main advantage of the presented methods.

The performed numerical experiments demonstrated very fast convergence
of the modified methods for finding multiple zeros. For illustration, we present
two numerical examples. As a measure of closeness of approximations with
regard to the exact zeros, we have calculated Euclid’s norm

e(m) := ||z(m) − ζ||E =

(
ν∑

i=1

µi

∣∣z(m)
i − ζi

∣∣2)1/2

.

Example 1 We applied the proposed methods (TS(k)) and (SS(k)), obtained
for α = 0, α = µi/(n − µi), α = 1/2, α = 1 and α = −1, for the simultaneous
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approximation to the multiple zeros of the polynomial

P (z) = z13 − (1− 2i)z12 − (10 + 2i)z11 − (30 + 18i)z10 + (35− 62i)z9

+(293 + 52i)z8 + (452 + 524i)z7 − (340− 956i)z6

−(2505 + 156i)z5 − (3495 + 4054i)z4 − (538 + 7146i)z3

+(2898− 5130i)z2 + (2565− 1350i)z + 675
= (z + 1)4(z − 3)3(z + i)2(z2 + 2z + 5)2.

The exact zeros of this polynomial are ζ1 = −1, ζ2 = 3, ζ3 = −i and ζ4,5 =
−1±2i with the multiplicities µ1 = 4, µ2 = 3, µ3 = µ4 = µ5 = 2. The following
complex numbers were chosen as starting approximations to these zeros:

z
(0)
1 = −0.7 + 0.3i, z

(0)
2 = 2.7 + 0.3i, z

(0)
3 = 0.3− 0.8i,

z
(0)
4 = −1.2− 2.3i, z

(0)
5 = −1.3 + 2.2i.

In the presented example for the initial approximations we have e(0) ≈ 1.43.
The measure of accuracy e(m) (m = 1, 2, 3) is displayed in Table 2.

Meth. α = 0 α = µi/(n− µi) α = 1/2 α = 1 α = −1

e(1) 2.39(−2) 1.62(−2) 1.93(−2) 6.32(−2) 5.72(−2)

(TS) e(2) 1.47(−8) 1.18(−9)) 1.39(−9) 8.80(−7) 1.54(−6)

e(3) 8.08(−34) 6.08(−38) 9.63(−38) 4.96(−26) 2.20(−26)

e(1) 7.64(−3) 7.26(−3) 7.24(−3) 7.35(−3) 8.61(−3)

(TSN) e(2) 1.95(−13) 1.05(−13) 7.74(−14) 1.21(−13) 5.17(−13)

e(3) 2.72(−66) 8.04(−68) 1.01(−69) 1.40(−66) 9.97(−64)

e(1) 1.94(−3) 1.66(−3) 1.70(−3) 5.20(−3) 3.32(−3)

(TSH) e(2) 1.35(−19) 2.78(−20) 2.06(−20) 2.14(−17) 2.61(−17)

e(3) 1.69(−116) 7.16(−121) 6.04(−121) 2.46(−103) 1.88(−101)

e(1) 1.54(−2) 1.38(−2) 1.42(−2) 1.51(−2) 1.99(−2)

(SS) e(2) 3.48(−10) 1.95(−10) 2.54(−10) 1.03(−9) 2.02(−9)

e(3) 1.18(−42) 2.35(−43) 1.19(−41) 5.72(−40) 2.40(−38)

e(1) 6.20(−3) 5.77(−3) 5.94(−3) 6.35(−3) 7.61(−3)

(SSN) e(2) 1.82(−14) 1.20(−14) 1.95(−14) 6.98(−14) 1.28(−13)

e(3) 1.35(−77) 2.31(−78) 7.86(−74) 5.78(−70) 6.98(−70)

e(1) 1.57(−3) 1.51(−3) 1.57(−3) 1.88(−3) 2.06(−3)

(SSN) e(2) 1.49(−20) 9.35(−21) 1.49(−20) 1.11(−19) 1.86(−19)

e(3) 5.26(−133) 1.39(−134) 1.57(−126) 3.77(−118) 1.03(−119)

Table 2 Euclid’s norm of errors; A(−q) means A× 10−q .

Example 2 The same iterative methods as in Example 1 were applied for the
simultaneous approximation to the zeros of the polynomial

P (z) = z12 + (3− 6i)z11 − (24 + 18i)z10 − (72− 80i)z9

+(230 + 240i)z8 + (690− 612i)z7 − (1332 + 1836i)z6

−(3996− 2488i)z5 + (4225 + 7464i)z4 + (12675− 6150i)z3

−(7500 + 18450i)z2 − (22500− 5000i)z + 15000i

= (z + 3)(z − 2i)3(z2 + 4z + 5)2(z2 − 4z + 5)2.

The exact zeros of this polynomial are ζ1 = −3, ζ2 = 2i, ζ3,4 = −2± i, ζ5,6 =
2± i, with the multiplicities µ1 = 1, µ2 = 3, µ3 = µ4 = µ5 = µ6 = 2. All tested
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methods started with the following initial approximations:

z
(0)
1 = −3.3 + 0.2i, z

(0)
2 = 0.3 + 2.3i, z

(0)
3 = −2.3 + 1.2i,

z
(0)
4 = −2.3− 1.3i, z

(0)
5 = 2.3 + 1.3i, z

(0)
6 = 2.3− 1.2i.

In the presented example, for the initial approximations we have e(0) = 1.34.
The measure of accuracy e(m) (m = 1, 2, 3) is displayed in Table 3.

Meth. α = 0 α = µi/(n− µi) α = 1/2 α = 1 α = −1

e(1) 1.07(−2) 5.35(−3) 1.17(−2) 4.88(−2) 3.10(−2)

(TS) e(2) 1.39(−10) 5.09(−12) 1.93(−10) 8.13(−8) 1.92(−8)

e(3) 4.85(−43) 1.74(−48) 1.87(−41) 6.86(−31) 3.14(−33)

e(1) 3.30(−3) 2.04(−3) 3.30(−3) 1.17(−2) 8.49(−3)

(TSN) e(2) 5.61(−16) 7.11(−17) 1.56(−15) 1.42(−12) 1.38(−13)

e(3) 1.72(−79) 2.21(−84) 3.61(−77) 8.14(−62) 2.44(−67)

e(1) 6.63(−4) 5.03(−4) 7.22(−4) 1.97(−3) 1.47(−3)

(TSH) e(2) 1.79(−23) 4.91(−24) 4.28(−23) 5.08(−20) 2.42(−21)

e(3) 4.56(−141) 2.29(−144) 3.60(−138) 1.48(−119) 1.01(−127)

e(1) 5.57(−3) 3.96(−3) 6.83(−3) 1.96(−2) 1.48(−2)

(SS) e(2) 5.62(−13) 4.73(−13) 2.56(−12) 4.17(−10) 5.52(−10)

e(3) 6.91(−52) 1.53(−52) 5.30(−49) 4.86(−39) 1.57(−39)

e(1) 2.33(−3) 1.53(−3) 2.17(−3) 6.26(−3) 5.54(−3)

(SSN) e(2) 1.73(−15) 1.24(−17) 3.49(−17) 2.49(−14) 1.88(−14)

e(3) 8.51(−89) 1.47(−89) 1.08(−85) 1.45(−71) 2.16(−72)

e(1) 6.17(−4) 4.45(−4) 5.30(−4) 1.37(−3) 1.28(−3)

(SSH) e(2) 1.13(−23) 1.39(−24) 4.06(−24) 1.65(−21) 7.93(−22)

e(3) 1.12(−145) 1.11(−150) 5.24(−146) 9.08(−128) 4.89(−131)

Table 3 Euclid’s norm of errors; A(−q) means A× 10−q .

From Tables 2 and 3, and a number of tested polynomial equations we
can conclude that the results obtained by the proposed methods coincide well
with theoretical results given in Theorems 1 and 2. Also, we note that two
iterative steps of the presented families of methods are usually sufficient in
solving most of practical problems when initial approximations are reasonably
good and polynomials are well-conditioned. The third iteration is given to
demonstrate remarkably fast convergence and present approximations of very
high accuracy, rarely needed in practice at present.
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