
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 14 (2018), 067, 23 pages

Tetrahedron Equation and Quantum R Matrices

for q-Oscillator Representations Mixing Particles

and Holes

Atsuo KUNIBA

Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo,
Komaba, Tokyo 153-8902, Japan
E-mail: atsuo.s.kuniba@gmail.com

Received March 15, 2018, in final form June 23, 2018; Published online July 04, 2018

https://doi.org/10.3842/SIGMA.2018.067

Abstract. We construct 2n + 1 solutions to the Yang–Baxter equation associated with the

quantum affine algebras Uq

(
A

(1)
n−1

)
, Uq

(
A

(2)
2n

)
, Uq

(
C

(1)
n

)
and Uq

(
D

(2)
n+1

)
. They act on the Fock

spaces of arbitrary mixture of particles and holes in general. Our method is based on new
reductions of the tetrahedron equation and an embedding of the quantum affine algebras into
n copies of the q-oscillator algebra which admits an automorphism interchanging particles
and holes.
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1 Introduction and main results

The principal structure in quantum integrable systems is the Yang–Baxter equation [1]:

R1,2(x)R1,3(xy)R2,3(y) = R2,3(y)R1,3(xy)R1,2(x). (1.1)

The tetrahedron equation [20] is a three dimensional (3d) analogue of it having the form

R1,2,4R1,3,5R2,3,6R4,5,6 = R4,5,6R2,3,6R1,3,5R1,2,4, (1.2)

where R lives in End(F⊗F⊗F ) for some vector space F . The equality holds in End
( 1
F⊗· · ·⊗

6
F
)
.

The Ri,j,k in (1.2) acts on the components
i
F ⊗

j

F ⊗
k
F in

1
F ⊗ · · · ⊗

6
F as R and as the identity

elsewhere. Composing the above equation n times one gains a ‘non-local’ relation

(R11,21,4R11,31,5R21,31,6) · · · (R1n,2n,4R1n,3n,5R2n,3n,6)R4,5,6

= R4,5,6(R21,31,6R11,31,5R11,21,4) · · · (R2n,3n,6R1n,3n,5R1n,2n,4),

where the spaces 1, 2, 3 have been replaced by the copies 1i, 2i, 3i with i = 1, . . . , n. It can be
cast into the following form just by commuting R’s without common indices:

(R11,21,4 · · ·R1n,2n,4)(R11,31,5 · · ·R1n,3n,5)(R21,31,6 · · ·R2n,3n,6)R4,5,6

= R4,5,6(R21,31,6 · · ·R2n,3n,6)(R11,31,5 · · ·R1n,3n,5)(R11,21,4 · · ·R1n,2n,4). (1.3)

This is almost the Yang–Baxter equation except the conjugation by R4,5,6. In fact there are two

ways to evaluate
4
F ⊗

5
F ⊗

6
F out to reduce (1.3) to the Yang–Baxter equation (1.1) with

Rα,β(x) = Tra
(
xhaRα1,β1,a · · ·Rαn,βn,a

)
(trace reduction), (1.4)

Rα,β(x) =
〈
χs|xhaRα1,β1,a · · ·Rαn,βn,a|χt

〉
(boundary vector reduction; s, t = 1, 2), (1.5)
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where the operator ha ∈ End
( a
F
)

and the elements
〈
χs| ∈

a
F ∗, |χt

〉
∈

a
F called boundary vectors

will be explained in Section 2. We have regarded the F to be eliminated as an auxiliary space
and labeled it with a.

The above reduction works for arbitrary n hence generates an infinite family of solutions
to the Yang–Baxter equation from a single solution to the tetrahedron equation. This idea has
a long history; see [3, 9, 17, 18] and references therein. As for the input R, we will exclusively deal
with the celebrated solution to the tetrahedron equation [8] discovered as the intertwiner of the
quantized coordinate ring Aq(sl3). See (2.3) and (2.4) for an explicit formula and [2, 10, 11, 16]
for further aspects. The R is a linear operator on F⊗3 with F being the q-oscillator Fock space
F =

⊕
m≥0C(q

1
2 )|m〉. The reduction procedure based on this R has been studied extensively

in recent years [3, 12, 13, 14, 17]. By the construction (1.4) and (1.5), the resulting R matrices,
i.e., solutions to the Yang–Baxter equation, become linear operators on the tensor product of
the Fock spaces1 F⊗n ⊗ F⊗n.

Having infinitely many R matrices at hand, a fundamental problem is to clarify their origin
in the framework of quantum group theory. More specifically one should identify the quantum
affine algebras Uq, if any, which characterize the R matrices by the intertwining relation

∆op(g)R = R∆(g) ∀ g ∈ Uq, (1.6)

in an appropriate representation space. Here ∆ and ∆op denote the coproduct and its opposite
(cf. (3.2)). In short one should elucidate the quantum group symmetry of the R matrices [4, 6].

The previous works have revealed that the trace reduction (1.4) is linked with Uq
(
A

(1)
n−1
)

[3, 12]

whereas the boundary vector reduction (1.5) is associated to Uq
(
A

(2)
2n

)
, Uq

(
C

(1)
n

)
and Uq

(
D

(2)
n+1

)

depending on the choice of the boundary vectors (s, t) = (1, 2), (2, 2) and (1, 1), respective-
ly [12, 14]. The relevant representations are q-oscillator representations2 which allow a natural
interpretation in terms of particles or holes.

Our aim in this paper is to generalize these results further by exploring new variants of the
reduction method. Let us illustrate them along the trace reduction with n = 3. We write
(1.4)|n=3 simply as Tr•

(
zh•R◦◦•R◦◦•R◦◦•

)
paying attention only to which component is adopted

as the auxiliary space a = •. We will show that the reduction to the Yang–Baxter equation
works equally well and produces different R matrices for the following 23 + 1 arrangements:

Tr•
(
zh•R◦◦•R◦◦•R◦◦•

)
, Tr•

(
zh•R◦◦•R◦◦•R•◦◦

)
, Tr•

(
zh•R◦◦•R•◦◦R◦◦•

)
,

Tr•
(
zh•R◦◦•R•◦◦R•◦◦

)
, Tr•

(
zh•R•◦◦R◦◦•R◦◦•

)
, Tr•

(
zh•R•◦◦R◦◦•R•◦◦

)
,

Tr•
(
zh•R•◦◦R•◦◦R◦◦•

)
, Tr•

(
zh•R•◦◦R•◦◦R•◦◦

)
, Tr•

(
zh•R◦•◦R◦•◦R◦•◦

)
. (1.7)

This list is obtained by placing either R◦◦• or R•◦◦ at each factor of the product. The top
left is (1.4)|n=3. The exception is the bottom right which contains R◦•◦ only. The general n
case is similar. Consequently we have 2n + 1 R matrices either from the trace reduction or the
boundary vector reduction for each choice of the boundary vectors. They will be denoted by
Str(ε1, . . . , εn|z), Ss,t(ε1, . . . , εn|z) where (ε1, . . . , εn) ∈ {1, 3}n or (ε1, . . . , εn) = (2, . . . , 2). They
are all expressed in the matrix product forms (1.4) and (1.5) connected to the 3d integrability.
This is our first result in the paper, which will be detailed in Section 2.

Our second result is about the quantum group symmetry of the so obtained R matrices. To
explain it, note that the relevant representations in the previous works [3, 12] is most transpar-

1This might look too huge, but actually the R matrix arising from the trace reduction (1.4) splits into a direct
sum of finite dimensional ones.

2They correspond to (3.8) and (3.9) with ε = (3, . . . , 3). The former is a representation of Uq

(
A

(1)
n−1

)
, which

splits into a direct sum of (dual of the) symmetric tensor representations.
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ently understood as the composition [14]:

Uq(gn)
πz−→ B⊗nq

[
z, z−1

] ρ⊗···⊗ρ−→ End
(
F⊗n

)
, (1.8)

where z is a spectral parameter and gn = A
(1)
n−1, A

(2)
2n , C

(1)
n , D

(2)
n+1 are affine Lie algebras [7]

which are already mentioned after (1.6). The homomorphism πz is specified in (3.6) and (3.7)
depending on gn. The Bq denotes the q-oscillator algebra generated by b+, b−, t±1 obeying the
relations

tt−1 = t−1t = 1, tb± = q±1b±t, b±b∓ = 1− q∓1t2.

Finally the map ρ : Bq → End(F ) is the representation (3.3) sending b+ to the creation operator,
b− to the annihilation operator and t±1 to the (exponentiated) number operators which are
concretely realized on the Fock space as (2.9). A key observation at this point is that Bq admits
the automorphisms (u ∈ C× is a parameter)

ω(1)
u : b+ 7→ −ut−1b−, b− 7→ u−1t−1b+, t 7→ −t−1,
ω(3)
u : b+ 7→ ub+, b− 7→ u−1b−, t 7→ t.

In particular the first one interchanges the creation and the annihilation operators. Thus Bq is

endowed with two types of representations defined by ρ
(ε)
u := ρ ◦ ω(ε)

u for ε = 1, 3.
Now we are ready to digest our result on the quantum group symmetry of the R matrices

obtained by the new 2n reductions. The associated quantum affine algebra Uq(gn) remains

unchanged from the previous result [3, 12, 14]. Namely gn = A
(1)
n−1 for the trace reduction and

gn = A
(2)
2n , C

(1)
n , D

(2)
n+1 for the boundary vector reduction depending on the boundary vectors.

On the other hand the relevant representations (1.8) are generalized to

πz,u(ε) : Uq(gn)
πz−→ B⊗nq

[
z, z−1

] ρ(ε1)u1
⊗···⊗ρ(εn)

un−→ End
(
F⊗n

)
. (1.9)

Here the essential data is the array ε = (ε1, . . . , εn) ∈ {1, 3}n which is determined as εi = 1 or
εi = 3 according to whether the i-th R in (1.4) and (1.5) is of type R•◦◦ or R◦◦•, respectively.
The parameters u = (u1, . . . , un) ∈ (C×)n do not play a significant role. The R matrices enjoy
the Uq symmetry (1.6) in the representation πx,u(ε) ⊗ πy,u(ε). These results are summarized
in Theorem 3.1 and Theorem 3.2, respectively. They include the previous ones [12, 14] as the

special case ε = (3, . . . , 3). The representation3 πtrz,u(ε) of Uq
(
A

(1)
n−1
)

is a direct sum of finite
dimensional ones if and only if ε = (1, . . . , 1) or (3, . . . , 3). The irreducible components contained
in πtrz,u(1, . . . , 1) are the symmetric tensor representations corresponding to the Young diagrams
that have a single row. Similarly the irreducible components contained in πtrz,u(3, . . . , 3) are
their duals corresponding to the Young diagrams of rectangular shape with depth n − 1. In
the language of the q-oscillators, they correspond to a system of particles or holes only. In
this sense πz,u(ε) in (1.9) with general ε ∈ {1, 3}n is viewed as a q-oscillator representation
mixing particles and holes. These degrees of freedom live on the vertices of the Dynkin diagram
of gn and hop to the neighboring ‘sites’ according to the rules (3.11)–(3.22) via pair creation

and annihilation. The algebra A
(1)
n−1 corresponds to the periodic boundary condition while A

(2)
2n ,

C
(1)
n , D

(2)
n+1 describe the systems with various injection/ejection at the boundaries.

Let us turn to the exceptional reduction involving only R◦•◦ like the bottom right case of (1.7).

We find that the trace reduction produces the R matrix with the Uq
(
A

(1)
n−1
)

symmetry (1.6) on

3The map πz in (1.9) is taken to be πtr
z in (3.6) for the trace reduction and accordingly (1.9) is denoted

by πtr
z,u(ε) in (3.8).
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the representation πtrx,u(3, . . . , 3) ⊗ πtry,u(1, . . . , 1). See Theorem 3.3 for the precise statement.
This R matrix is known to be a basic ingredient in the box-ball system with reflecting end via its
geometric and combinatorial counterparts [15, equation (2.3), Appendix A.3]. Our result here
establishes a matrix product formula of it for the first time. It will also be an essential input to
the project [16, Section 6(iii)] on the recently proposed quantized reflection equation. As for the
boundary vector reduction involving only R◦•◦, the corresponding solution to the Yang–Baxter
equation is not locally finite (see the end of Section 2.4) and we have not found a quantum group
symmetry.

The variants of the reductions introduced in this paper have essentially emerged from the
three local forms of the tetrahedron equation (2.2), (2.22) and (2.23). Similar possibilities have
been pursued extensively in [19] including fermionic degrees of freedom. The importance of the
automorphism of the q-oscillator algebra and the appearance of infinite dimensional representa-
tions mixing particles and holes were recognized there.

Let us summarize the solutions to the Yang–Baxter equation covered in this paper. They all
originate in the R.

trace reduction boundary vector reduction

Str(ε|z) S1,1(ε|z), S1,2(ε|z), S2,1(ε|z), S2,2(ε|z)
Str(2|z) S1,1(2|z), S1,2(2|z), S2,1(2|z), S2,2(2|z)

Here ε ∈ {1, 3}n and 2 = (2, . . . , 2). For the homogeneous choices ε = (1, . . . , 1) or (3, . . . , 3),
Str(ε|z) was studied in [2, 3, 12] and Ss,t(ε|z) in [12, 14]. The other cases are new.

There is also another generalization of the reduction method [13] to include the 3d L operator
obeying the RLLL = LLLR relation [3]. Section 2.8 of [13] provides a concise survey of the
status. Combining these degrees of freedom in full generality is beyond the scope of this work.
We believe nonetheless that the treatise in this paper will serve as a basic step toward a thorough
understanding of the subject.

In Section 2 we recall the solution R to the tetrahedron equation and demonstrate the reduc-
tion procedures generalizing the previous ones. They lead to the solutions to the Yang–Baxter
equation listed in the above table. Their basic properties are described. In particular the sub-
spaces of F⊗n⊗F⊗n that are kept invariant under these solutions are extracted in (2.56)–(2.60)
and the corresponding decompositions are listed in (2.61)–(2.66).

In Section 3 we recall the q-oscillator algebra Bq, its automorphisms and the homomorphism

from Uq to B⊗nq [5, 14]. They are combined to define the representations πtrz,u(ε) of Uq
(
A

(1)
n−1
)
,

π1,2z,u(ε) of Uq
(
A

(2)
2n

)
, π2,2z,u(ε) of Uq(C

(1)
n ) and π1,1z,u(ε) of Uq

(
D

(2)
n+1

)
, where the superscripts s, t

of πs,tz,u(ε) correspond to the choices of the boundary vectors in (1.5). We describe the ac-
tions of the generators in these representations explicitly. Our main results in this section are
Theorems 3.1, 3.2 and 3.3 which clarify the Uq symmetry of the solutions to the Yang–Baxter
equations constructed in Section 2 (except Ss,t(2, . . . , 2|z)). The tensor product representa-
tion of Uq corresponding to each summand in the decompositions (2.61)–(2.66) is irreducible
for (2.61) with ε = (1, . . . , 1), (3, . . . , 3) and (2.64). In the other cases the irreducibility is yet to
be investigated.

Throughout the paper we assume that q is generic and use the following notations:

(z; q)m =

m∏

k=1

(
1− zqk−1

)
, (q)m = (q; q)m,

(
m

k

)

q

=
(q)m

(q)k(q)m−k
,

[m] = [m]q =
qm − q−m
q − q−1 , θ(true) = 1, θ(false) = 0,

ei = (0, . . . , 0,
i
1, 0, . . . , 0) ∈ Zn, 1 ≤ i ≤ n or i ∈ Zn.
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2 Solutions of the Yang–Baxter equation

2.1 Tetrahedron equation and 3d R

Let F =
⊕

m≥0C
(
q

1
2

)
|m〉 and F ∗ =

⊕
m≥0C

(
q

1
2

)
〈m| be a Fock space4 and its dual equipped

with the bilinear pairing

〈m|m′〉 = δm,m′
(
q2
)
m
, (2.1)

where δm,m′ = θ(m = m′). In this paper we will study the tetrahedron equation of the form

R1,2,4R1,3,5R2,3,6R4,5,6 = R4,5,6R2,3,6R1,3,5R1,2,4, (2.2)

where R lives in End
(
F⊗3

)
. The equality (2.2) holds in End

(
F⊗6

)
, where R1,2,4 for example

means the operator acting on the 1st, the 2nd and the 4th component in F⊗6 from the left as R

and identity elsewhere.
We will exclusively deal with the following solution to (2.2):

R(|i〉 ⊗ |j〉 ⊗ |k〉) =
∑

a,b,c≥0
R
a,b,c
i,j,k |a〉 ⊗ |b〉 ⊗ |c〉, (2.3)

R
a,b,c
i,j,k = δa+bi+j δ

b+c
j+k

∑

λ+µ=b

(−1)λqi(c−j)+(k+1)λ+µ(µ−k)
(
q2
)
c+µ(

q2
)
c

(
i

µ

)

q2

(
j

λ

)

q2
, (2.4)

where δmn = δm,n just to save the space. The sum (2.4) is taken over λ, µ ∈ Z≥0 satisfying
λ+ µ = b, µ ≤ i and λ ≤ j. The formula (2.4) is taken from [11, equation (2.20)].

This solution was originally obtained5 as the intertwiner of the quantum coordinate ring
Aq(sl3) [8]. Later it also emerged from a quantum geometry consideration [3], and the two R’s
in these literatures were identified in [11, equation (2.29)]. Here we simply call it the 3d R. It
satisfies the following:

R1,2,3 = R3,2,1 or equivalently R
a,b,c
i,j,k = R

c,b,a
k,j,i , (2.5)

R
a,b,c
i,j,k = 0 unless (a+ b, b+ c) = (i+ j, j + k), (2.6)

R
a,b,c
i,j,k =

(
q2
)
i

(
q2
)
j

(
q2
)
k(

q2
)
a

(
q2
)
b

(
q2
)
c

R
i,j,k
a,b,c, (2.7)

R = R−1. (2.8)

The second property is refered to as the conservation law. The third one is due to [11, Proposi-

tion 2.4]. We let R act also on (F ∗)⊗3 by (〈i| ⊗ 〈j| ⊗ 〈k|)R =
∑

a,b,cR
a,b,c
i,j,k 〈a| ⊗ 〈b| ⊗ 〈c|. In view

of (2.1), this matches (〈a| ⊗ 〈b| ⊗ 〈c|)
(
R(|i〉 ⊗ |j〉 ⊗ |k〉)

)
=
(
(〈a| ⊗ 〈b| ⊗ 〈c|)|R

)
(|i〉 ⊗ |j〉 ⊗ |k〉).

For later use, we introduce the creation, annihilation and number operators on F , F ∗ by

a+|m〉 = |m+ 1〉, a−|m〉 =
(
1− q2m

)
|m− 1〉, k|m〉 = qm+ 1

2 |m〉, (2.9)

〈m|a− = 〈m+ 1|, 〈m|a+ = 〈m− 1|
(
1− q2m

)
, 〈m|k = 〈m|qm+ 1

2 , (2.10)

h|m〉 = m|m〉, 〈m|h = 〈m|m, (2.11)

where |− 1〉 = 〈−1| = 0. Due to (2.1) they satisfy (〈m|X)|m′〉 = 〈m|(X|m′〉). By definition, the

identity k = q
1
2
+h holds. The extra 1

2
here is the celebrated zero point energy, which makes the

coefficients in (2.13)–(2.16) free from q totally6. It is easy to check the q-oscillator relations:

ka± = q±1a±k, a+a− = 1− q−1k2, a−a+ = 1− qk2. (2.12)

4C(x) denotes the field of rational functions with complex coefficients of the variable x.
5The formula for it on p. 194 in [8] contains a misprint unfortunately. Equation (2.4) here is a correction of it.
6This is an indication of a parallel story in the modular double setting. See [14] and references therein.
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It is known that the 3d R is uniquely characterized (up to sign) as the involutive operator
on F⊗3 satisfying the following relations (cf. [3, 8, 17]):

Rk2a
+
1 = (k3a

+
1 + k1a

+
2 a
−
3 )R, Rk2a

−
1 = (k3a

−
1 + k1a

−
2 a

+
3 )R, (2.13)

Ra+2 = (a+1 a
+
3 − k1k3a

+
2 )R, Ra−2 = (a−1 a

−
3 − k1k3a

−
2 )R, (2.14)

Rk2a
+
3 = (k1a

+
3 + k3a

−
1 a

+
2 )R, Rk2a

−
3 = (k1a

−
3 + k3a

+
1 a
−
2 )R, (2.15)

Rk1k2 = k1k2R, Rk2k3 = k2k3R. (2.16)

Here for example k2a
+
1 , k1a

+
2 a
−
3 mean a+ ⊗ k⊗ 1, k⊗ a+ ⊗ a−. Thus operators with different

indices are commutative. In this notation, (2.6) is rephrased as

[
R, xh1(xy)h2yh3

]
= 0, (2.17)

for generic parameters x and y. Introduce the vectors

|χ1(z)〉 = zh|χ1〉, |χ2(z)〉 = zh|χ2〉, |χ1〉 =
∑

m≥0

|m〉
(q)m

, |χ2〉 =
∑

m≥0

|2m〉(
q4
)
m

,

〈χ1(z)| = 〈χ1|zh, 〈χ2(z)| = 〈χ2|zh, 〈χ1| =
∑

m≥0

〈m|
(q)m

, 〈χ2| =
∑

m≥0

〈2m|(
q4
)
m

. (2.18)

Up to normalization they are characterized by the relations

a±|χ1〉 =
(
1∓ q∓ 1

2k
)
|χ1〉, 〈χ1|a± = 〈χ1|

(
1± q± 1

2k
)
, (2.19)

a+|χ2〉 = a−|χ2〉, 〈χ2|a+ = 〈χ2|a−. (2.20)

The following equalities are known to hold for s = 1, 2 [17, Proposition 4.1]:

(〈χs| ⊗ 〈χs| ⊗ 〈χs|)R = 〈χs| ⊗ 〈χs| ⊗ 〈χs|,
R(|χs〉 ⊗ |χs〉 ⊗ |χs〉) = |χs〉 ⊗ |χs〉 ⊗ |χs〉. (2.21)

2.2 Reduction to the Yang–Baxter equation

By taking the conjugation R1,2,4(2.2)R−11,2,4 and using (2.8), (2.5) we have

R1,3,5R2,3,6R4,5,6R1,2,4 = R1,2,4R4,5,6R2,3,6R1,3,5, (2.22)

R4,2,1R4,5,6R2,3,6R1,3,5 = R1,3,5R2,3,6R4,5,6R4,2,1. (2.23)

Let
αi

F ,
βi
F ,

γi
F be copies of F , where αi, βi and γi, i = 1, . . . , n, are just labels for distinction

and not parameters. (They will mostly be suppressed after this subsection.) In the three
forms of the tetrahedron equation (2.2), (2.22) and (2.23), change the labels (1, 2, 3, 4, 5, 6) into
(αi, βi, γi, 4, 5, 6), (4, 5, αi, 6, βi, γi) and (4, βi, 5, αi, 6, γi), respectively. The results read

Rαi,βi,4Rαi,γi,5Rβi,γi,6R4,5,6 = R4,5,6Rβi,γi,6Rαi,γi,5Rαi,βi,4, (2.24)

R4,αi,βiR5,αi,γiR6,βi,γiR4,5,6 = R4,5,6R6,βi,γiR5,αi,γiR4,αi,βi , (2.25)

Rαi,βi,4Rαi,6,γiRβi,5,γiR4,5,6 = R4,5,6Rβi,5,γiRαi,6,γiRαi,βi,4. (2.26)

Write these relations uniformly as

P
(ε)
i R4,5,6 = R4,5,6P̄

(ε)
i , ε = 1, 2, 3, i = 1, . . . , n (2.27)
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in terms of the operators

P
(1)
i = R4,αi,βiR5,αi,γiR6,βi,γi , P̄

(1)
i = R6,βi,γiR5,αi,γiR4,αi,βi ,

P
(2)
i = Rαi,βi,4Rαi,6,γiRβi,5,γi , P̄

(2)
i = Rβi,5,γiRαi,6,γiRαi,βi,4,

P
(3)
i = Rαi,βi,4Rαi,γi,5Rβi,γi,6, P̄

(3)
i = Rβi,γi,6Rαi,γi,5Rαi,βi,4, (2.28)

which act on the six spaces
αi

F ,
βi
F ,

γi
F ,

4
F ,

5
F ,

6
F . The relation (2.27) with ε = 1, 2, 3 correspond

to (2.25), (2.26) and (2.24), respectively. We have suppressed the indices 4, 5, 6 for P
(ε)
i , P̄

(ε)
i

for simplicity. Composing the operators P
(εi)
i with i = 1, . . . , n on

4
F ⊗

5
F ⊗

6
F and applying the

relation (2.27) repeatedly we get

P
(ε1)
1 · · ·P (εn)

n R4,5,6 = R4,5,6P̄
(ε1)
1 · · · P̄ (εn)

n , εi = 1, 2, 3. (2.29)

This is an equality in End
(α
F ⊗

β

F ⊗
γ

F ⊗
4
F ⊗

5
F ⊗

6
F
)

with
α
F =

α1

F ⊗ · · · ⊗
αn

F (= F⊗n) for the

array of labels α = (α1, . . . , αn). The notations
β

F and
γ

F should be understood similarly. The
argument so far is just a 3d analogue of the simple fact in 2d that a single RLL = LLR relation
for a local L operator implies a similar relation for the n-site monodromy matrix in the quantum

inverse scattering method. In this terminology
4
F ,

5
F ,

6
F play the role of auxiliary spaces.

Now we are going to eliminate R4,5,6 by evaluating the auxiliary spaces
4
F ,

5
F ,

6
F away. There

are two ways to do this. The first one is to multiply xh4(xy)h5yh6R−14,5,6 to (2.29) from the left

and take the trace over
4
F ⊗

5
F ⊗

6
F . From (2.17) the result becomes

Tr4,5,6
(
xh4(xy)h5yh6P

(ε1)
1 · · ·P (εn)

n

)
= Tr4,5,6

(
xh4(xy)h5yh6P̄

(ε1)
1 · · · P̄ (εn)

n

)
. (2.30)

The second way is to sandwich xh4(xy)h5yh6×(2.29) between the vectors in (2.18). Using (2.21)
and (2.17) we get

4

〈χs(x)| ⊗
5

〈χs(xy)| ⊗
6

〈χs(y)|P (ε1)
1 · · ·P (εn)

n

4

|χt〉 ⊗
5

|χt〉 ⊗
6

|χt〉

=
4

〈χs(x)| ⊗
5

〈χs(xy)| ⊗
6

〈χs(y)|P̄ (ε1)
1 · · · P̄ (εn)

n

4

|χt〉 ⊗
5

|χt〉 ⊗
6

|χt〉, s, t = 1, 2. (2.31)

In order to reduce (2.30) and (2.31) to the Yang–Baxter equation, we seek the situation such
that the two sides factorize into three operators each of which is associated with only one of the

auxiliary spaces
a
F =

4
F ,

5
F or

6
F . Each piece will be an operator of the form

Str
α,β(ε1, . . . , εn|z) = %tr(ε1, . . . , εn|z) Tra

(
zhaR

(ε1)
α1,β1

· · ·R(εn)
αn,βn

)
∈ End

(α
F ⊗

β

F
)
, (2.32)

Ss,tα,β(ε1, . . . , εn|z) = %s,t(ε1, . . . , εn|z)
a

〈χs|zhaR
(ε1)
α1,β1

· · ·R(εn)
αn,βn

) a

|χt〉 ∈ End
(α
F ⊗

β

F
)
, (2.33)

where (ε1, . . . , εn) ∈ {1, 2, 3}n and R
(εi)
αi,βi

is a temporal notation for the 3d R acting on
αi

F ,
βi
F ,

a
F :

R
(1)
αi,βi

= Ra,αi,βi , R
(2)
αi,βi

= Rαi,a,βi , R
(3)
αi,βi

= Rαi,βi,a. (2.34)

The a can actually be any dummy label since it is being evaluated out. In (2.32) and (2.33),

composition of R
(εi)
αi,βi

is taken along the auxiliary space
a
F , where Tra(· · · ) and

a

〈χs|(· · · )
a

|χt〉
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are also to be evaluated. We have inserted the scalars %tr(ε1, . . . , εn|z) and %s,t(ε1, . . . , εn|z) to
control the normalization. They will be specified in Section 2.8.

It turns out that not all of the 3n choices of (ε1, . . . , εn) in (2.30) admits the factorization into
the operator (2.32). Rather, there are 2n + 1 cases leading to the Yang–Baxter equation. The
same feature holds also between (2.33) and (2.31). The 2n + 1 cases correspond to the choice
(ε1, . . . , εn) ∈ {1, 3}n and (ε1, . . . , εn) = (2, . . . , 2). We illustrate them separately in the sequel.

(i) Case (ε1, . . . , εn) ∈ {1, 3}n. Take n = 2 for example and consider the l.h.s. of (2.30) with
(ε1, ε2) = (1, 3) and the l.h.s. of (2.31) with (ε1, ε2) = (1, 1). They are factorized as

Tr4,5,6
(
xh4(xy)h5yh6R4,α1,β1R5,α1,γ1R6,β1,γ1Rα2,β2,4Rα2,γ2,5Rβ2,γ2,6

)

= Tr4
(
xh4R4,α1,β1Rα2,β2,4

)
Tr5
(
(xy)h5R5,α1,γ1Rα2,γ2,5

)
Tr6
(
yh6R6,β1,γ1Rβ2,γ2,6

)

= Str
α,β(1, 3|x)Str

α,γ(1, 3|xy)Str
β,γ(1, 3|y)/%1,

4

〈χs(x)| ⊗
5

〈χs(xy)| ⊗
6

〈χs(y)|R4,α1,β1R5,α1,γ1R6,β1,γ1R4,α2,β2R5,α2,γ2R6,β2,γ2

4

|χt〉 ⊗
5

|χt〉 ⊗
6

|χt〉

=
4

〈χs(x)|R4,α1,β1R4,α2,β2

4

|χt〉
5

〈χs(xy)|R5,α1,γ1R5,α2,γ2

5

|χt〉
6

〈χs(y)|R6,β1,γ1R6,β2,γ2

6

|χt〉
= Ss,tα,β(1, 1|x)Ss,tα,γ(1, 1|xy)Ss,tβ,γ(1, 1|y)/%2,

where %1 = %tr(1, 3|x)%tr(1, 3|xy)%tr(1, 3|y) and %2 = %s,t(1, 1|x)%s,t(1, 1|xy)%s,t(1, 1|y). The case
of general n is similar. Since the r.h.s. also has the similar factorization with the same %1, %2,
the Yang–Baxter equation

Sα,β(x)Sα,γ(xy)Sβ,γ(y) = Sβ,γ(y)Sα,γ(xy)Sα,β(x) ∈ End
(α
F ⊗

β

F ⊗
γ

F
)

(2.35)

holds for Sα,β(z) = Str
α,β(ε1, . . . , εn|z) or Ss,tα,β(ε1, . . . , εn|z) ∈ End

(α
F ⊗

β

F
)

for any n as long as
(ε1, . . . , εn) ∈ {1, 3}n. The point in the above factorization is that no pair of the 3d R’s sharing
a common label have changed their order.

(ii) Case (ε1, . . . , εn) = (2, . . . , 2). Take n = 2 for example and consider the l.h.s. of (2.30)
with (ε1, ε2) = (2, 2). It is factorized as

Tr4,5,6
(
xh4(xy)h5yh6Rα1,β1,4Rα1,6,γ1Rβ1,5,γ1Rα2,β2,4Rα2,6,γ2Rβ2,5,γ2

)

= Tr4
(
xh4Rα1,β1,4Rα2,β2,4

)
Tr6
(
yh6Rα1,6,γ1Rα2,6,γ2

)
Tr5
(
(xy)h5Rβ1,5,γ1Rβ2,5,γ2

)

= Str
α,β(3, 3|x)Str

α,γ(2, 2|y)Str
β,γ(2, 2|xy)/%3,

where %3 = %tr(3, 3|x)%tr(2, 2|y)%tr(2, 2|xy). The r.h.s. is similarly factorized with the common %3.
General n case is similar and the same feature holds for (2.31) as well. Thus we find that (2.30)
and (2.31) are reduced to the Yang–Baxter equation

Sα,β(x)S∨α,γ
(
y−1
)
S∨β,γ

(
x−1y−1

)

= S∨β,γ
(
x−1y−1

)
S∨α,γ

(
y−1
)
Sα,β(x) ∈ End

(α
F ⊗

β

F ⊗
γ

F
)
, (2.36)

where, depending on (2.30) or (2.31) we have set

Sα,β(z) = Str
α,β(3, . . . , 3|z), S∨α,β(z) = Str

α,β

(
2, . . . , 2|z−1

)
, (2.37)

Sα,β(z) = Ss,tα,β(3, . . . , 3|z), S∨α,β(z) = Ss,tα,β
(
2, . . . , 2|z−1

)
, s, t = 1, 2. (2.38)

We remark that mixture of {2} and {1, 3} in the sequence (ε1, . . . , εn) spoils the factorization
illustrated in the above, therefore it makes a reduction to the Yang–Baxter equation invalid.

This is seen evidently in (2.28), where P
(2)
i has the opposite ordering of the indices 5 and 6 from

that in P
(1)
i and P

(3)
i .
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2.3 Matrix elements of Str(ε|z) and Ss,t(ε|z)

Let us describe the elements of the matrices (2.32) and (2.33). Set

Str(ε1, . . . , εn|z)(|i〉 ⊗ |j〉) =
∑

a,b

Str(ε1, . . . , εn|z)a,bi,j |a〉 ⊗ |b〉 ∈ F⊗n ⊗ F⊗n, (2.39)

Ss,t(ε1, . . . , εn|z)(|i〉 ⊗ |j〉) =
∑

a,b

Ss,t(ε1, . . . , εn|z)a,bi,j |a〉 ⊗ |b〉 ∈ F⊗n ⊗ F⊗n, (2.40)

where |a〉 = |a1〉 ⊗ · · · ⊗ |an〉 ∈ F⊗n for a = (a1, . . . , an) ∈ (Z≥0)n, etc. We have removed the
labels α, β which are unnecessary hereafter. It is convenient to write

R
(1) a,b,c

i,j,k = R
c,a,b
k,i,j , R

(2) a,b,c
i,j,k = R

a,c,b
i,k,j , R

(3) a,b,c
i,j,k = R

a,b,c
i,j,k (2.41)

in terms of (2.4). Then applying (2.1), (2.11) and (2.18) to (2.32) and (2.33), we have

Str(ε1, . . . , εn|z)a,bi,j /%
tr(ε1, . . . , εn|z)

=
∑

c0,...,cn−1≥0
zc0R

(ε1) a1,b1,c0
i1,j1,c1

R
(ε2) a2,b2,c1

i2,j2,c2
· · ·R(εn−1) an−1,bn−1,cn−2

in−1,jn−1,cn−1
R
(εn) an,bn,cn−1

in,jn,c0
, (2.42)

Ss,t(ε1, . . . , εn|z)a,bi,j /%
s,t(ε1, . . . , εn|z) (2.43)

=
∑

c0,...,cn≥0

zsc0
(
q2
)
sc0(

qs2
)
c0

(
qt2
)
cn

R
(ε1) a1,b1,sc0

i1,j1,c1
R
(ε2) a2,b2,c1

i2,j2,c2
· · ·R(εn−1) an−1,bn−1,cn−2

in−1,jn−1,cn−1
R
(εn) an,bn,cn−1

in,jn,tcn
,

where
(
q2
)
sc0

in (2.43) originates in (2.1). Using (2.7) it is easy to show

Str(ε|z)a,bi,j /%
tr(ε|z) =

(
n∏

k=1

(
q2
)
ik

(
q2
)
jk(

q2
)
ak

(
q2
)
bk

)
Str(ε|z)i, j

a,b
/%tr(ε|z),

Ss,t(ε|z)a,bi,j /%
s,t(ε|z) =

(
n∏

k=1

(
q2
)
ik

(
q2
)
jk(

q2
)
ak

(
q2
)
bk

)
St,s(ε|z)i, j

a,b
/%t,s(ε|z), (2.44)

where m = (mn, . . . ,m1) denotes the reversal of an array m = (m1, . . . ,mn).
From (2.5) it is also straightforward to see

Str(1, . . . , 1|z)a,bi,j /%
tr(1, . . . , 1|z) = Str(3, . . . , 3|z)b,aj,i /%

tr(3, . . . , 3|z), (2.45)

Str(2, . . . , 2|z)a,bi,j = Str(2, . . . , 2|z)b,aj,i , (2.46)

Str(1, . . . , 1|z)a,bi,j /%
tr(1, . . . , 1|z) = Ss,t(3, . . . , 3|z)b,aj,i /%

s,t(3, . . . , 3|z), (2.47)

Ss,t(2, . . . , 2|z)a,bi,j = Ss,t(2, . . . , 2|z)b,aj,i . (2.48)

In fact, these are consequences of a finer relation valid for any k ∈ {1, . . . , n} as follows:

Str(ε|z)a,bi,j /%
tr(ε|z) = Str

(
εk|z

)ak,bk

ik,jk
/%tr

(
εk|z

)
,

Ss,t(ε|z)a,bi,j /%
s,t(ε|z) = Ss,t

(
εk|z

)ak,bk

ik,jk
/%s,t

(
εk|z

)
, (2.49)

where the arrays mk = (m′1, . . . ,m
′
n) here (m = ε,a,b, i, j) is specified from m = (m1, . . . ,mn)

by m′r = mr (r 6= k) and

ε′k = 4− εk, a′k = bk, b′k = ak, i′k = jk, j′k = ik.



10 A. Kuniba

One can use (2.49) to attribute Str(ε|z)a,bi,j , Ss,t(ε|z)a,bi,j for arbitrary ε ∈ {1, 3}n to the homoge-

neous case ε = (1, . . . , 1) and (3, . . . , 3). Note however that Str(ε|z), Ss,t(ε|z) with ε ∈ {1, 3}n
all yield distinct solutions to the Yang–Baxter equation7 since they keep different subspaces
specified by the conservation law (2.51), (2.52) depending on ε. Such spaces will be detailed in
Section 2.5.

2.4 Conservation laws of Str(ε|z) and Ss,t(ε|z)

Let us investigate the consequence of the conservation law (2.6). For instance consider Str(ε|z)a,bi,j

with ε = (ε1, . . . , εn) ∈ {1, 3}n. From (2.6), (2.41) and (2.42) we have

(ak + bk, ck−1 + ak) = (ik + jk, ck + ik) if εk = 1,

(ak + bk, ck−1 + bk) = (ik + jk, ck + jk) if εk = 3,

where k ∈ Zn. They are equivalent to ak + bk = ik + jk and ck−1 + (εk − 2)bk = ck + (εk − 2)jk
for all k ∈ Zn. The former means a + b = i + j ∈ Zn whereas the latter leads, by elimination of
c0, . . . , cn−1, to |b|ε = |j|ε in terms of the symbol defined by

|m|ε =
n∑

k=1

(εk − 2)mk for m = (m1, . . . ,mn) ∈ Zn, ε = (ε1, . . . , εn) ∈ {1, 3}n. (2.50)

Combining |b|ε = |j|ε and a + b = i + j one also has |a|ε = |i|ε. By a similar consideration the
following conservation law can be derived:

Case ε ∈ {1, 3}n,

(I) Str(ε|z)a,bi,j = 0 unless a + b = i + j, |a|ε = |i|ε, |b|ε = |j|ε, (2.51)

(II) Ss,t(ε|z)a,bi,j = 0 unless a + b = i + j, (|a|ε − |i|ε, |b|ε − |j|ε) ∈ (min(2, s, t)Z)2. (2.52)

Case ε = (2, . . . , 2),

(III) Str(2, . . . , 2|z)a,bi,j = 0 unless a− b = i− j, |a| = |i|, |b| = |j|, (2.53)

(IV) Ss,t(2, . . ., 2|z)a,bi,j = 0 unless a− b = i− j, (|a| − |i|, |b| − |j|)∈(min(2, s, t)Z)2. (2.54)

The last conditions in (2.52) and (2.54) are trivial unless s = t = 2. In (2.53) and (2.54) we
have used the symbol

|m| =
n∑

k=1

mk, (2.55)

which is the special case of (2.50) in that |m| = |m|(3,...,3) = −|m|(1,...,1).
We say that Str(ε|z) and Ss,t(ε|z) are locally finite if the summands in r.h.s. in (2.39)

and (2.40) are nonzero only for finitely many (a,b)’s for any given (i, j). The result (2.51)–(2.54)
tells that they are locally finite except Ss,t(2, . . . , 2|z). In any case, the matrix elements of the
Yang–Baxter equations (2.35) and (2.36) for the prescribed transition |i〉⊗|j〉⊗|k〉 7→ |a〉⊗|b〉⊗|c〉
in F⊗n ⊗ F⊗n ⊗ F⊗n consist of finitely many summands.

7The symmetry of Str(ε|z)a,bi,j under the simultaneous Zn cyclic shift of all the indices holds only at z = 1.
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2.5 Decomposition of Str(ε|z) and Ss,t(ε|z)

In view of (2.51)–(2.54) we prepare subspaces of F⊗n for a given array ε ∈ {1, 3}n as

V = F⊗n =
⊕

l∈Z
Vl(ε), (2.56)

Vl(ε) =
⊕

m∈(Z≥0)n, |m|ε=l
C
(
q

1
2
)
|m〉, l ∈ Z, (2.57)

V (ε)± =
⊕

m∈(Z≥0)n, |m|ε≡(1∓1)/2 mod 2

C
(
q

1
2
)
|m〉, V = V (ε)+ ⊕ V (ε)−, (2.58)

Vl = Vl(3, . . . , 3) =
⊕

m∈(Z≥0)n, |m|=l
C
(
q

1
2
)
|m〉, l ∈ Z≥0, (2.59)

V ± =
⊕

m∈(Z≥0)n, |m|≡(1∓1)/2 mod 2

C
(
q

1
2
)
|m〉, V = V + ⊕ V −, (2.60)

where |m|ε and |m| are defined in (2.50) and (2.55). By the definition we have Vl(ε) = {0} if
l > 0 and ε = (1, . . . , 1), or l < 0 and ε = (3, . . . , 3). Note also that Vl(3, . . . , 3) = V−l(1, . . . , 1)
and V (1, . . . , 1)± = V (3, . . . , 3)± = V ±. We shall never abbreviate Vl(ε) to Vl and V (ε)± to V ±

for example to avoid confusion8.

From (2.51)–(2.54) we have the direct sum decomposition:

(I) Str(ε|z) =
⊕

l,m∈Z
Str
l,m(ε|z),

Str
l,m(ε|z) ∈ End(Vl(ε)⊗ Vm(ε)), ε ∈ {1, 3}n, (2.61)

(II) Ss,t(ε|z) ∈ End(V ⊗ V ), (s, t) 6= (2, 2), ε ∈ {1, 3}n, (2.62)

S2,2(ε|z) =
⊕

σ,σ′=±1
S2,2
σ,σ′(ε|z),

S2,2
σ,σ′(ε|z) ∈ End

(
V (ε)σ ⊗ V (ε)σ

′)
, ε ∈ {1, 3}n, (2.63)

(III) Str(ε|z) =
⊕

l,m∈Z≥0

Str
l,m(ε|z),

Str
l,m(ε|z) ∈ End(Vl ⊗ Vm), ε = (2, . . . , 2), (2.64)

(IV) Ss,t(ε|z) ∈ End(V ⊗ V ), (s, t) 6= (2, 2), ε = (2, . . . , 2), (2.65)

S2,2(ε|z) =
⊕

σ,σ′=±1
S2,2
σ,σ′(ε|z),

S2,2
σ,σ′(ε|z) ∈ End

(
V σ ⊗ V σ′

)
, ε = (2, . . . , 2). (2.66)

In (2.61), the sum is a direct sum provided that the range is restricted to the nonzero cases, i.e.,
l,m ∈ Z≥0 if ε = (3, . . . , 3) and l,m ∈ Z≤0 if ε = (1, . . . , 1). In (2.64), it is actually more fitting
to write Vl ⊗ Vm as Vl(3, . . . , 3)⊗ V−m(1, . . . , 1). See the argument after Theorem 3.3.

2.6 Matrix product operators

In order to calculate the matrix elements (2.42) and (2.43), it is useful to reformulate the
3d R (2.41) as a family of operators on the auxiliary Fock space. Here we provide such operators.

8The definition (2.59) says that this abbreviation is allowed only for ε = (3, . . . , 3).



12 A. Kuniba

For a, b, i, j ∈ Z≥0, define R
a,b
i,j ,Q

a,b
i,j ∈ End(F ) by

R
a,b
i,j = δa+bi+j

∑

λ+µ=b

(−1)λqλ+µ
2−ib

(
i

µ

)

q2

(
j

λ

)

q2
(a−)µ(a+)j−λ(q−

1
2k)i+λ−µ, (2.67)

Q
a,b
i,j = δa−bi−j

∑

µ−ν=i−a
qib+µ(µ−j)−(j+1)ν

(
q2b+2; q2

)
µ(

q2
)
ν

×
(
i

µ

)

q2
(a+)µ(a−)ν(q−

1
2k)j−i+1(−1)h+ν . (2.68)

The sum (2.67) is taken in the same manner as (2.4), and the sum (2.68) ranges over µ, ν ∈ Z≥0
satisfying µ − ν = i − a and µ ≤ i. The operators R

a,b
i,j , Q

a,b
i,j have been designed so that the

action of the 3d R (2.3) is expressed as

R(|i〉 ⊗ |j〉 ⊗ |k〉) =
∑

a,b≥0
|a〉 ⊗ |b〉 ⊗ R

a,b
i,j |k〉, (2.69)

R(|i〉 ⊗ |j〉 ⊗ |k〉) =
∑

a,c≥0
|a〉 ⊗ Q

a,c
i,k |j〉 ⊗ |c〉. (2.70)

These relations can be checked by using, for example, (a−)ν |j〉 = θ(j ≥ ν)
(
q2
)
ν

(
j
ν

)
q2
|j−ν〉. The

operator R
a,b
i,j was first introduced in [10, equation (8)].

Now the elements of (2.32) and (2.33) are expressed as

Str(ε1, . . . , εn|z)a,bi,j = %tr(ε1, . . . , εn|z) Tr
(
zhR

(ε1) a1,b1
i1,j1
· · ·R(εn) an,bn

in,jn

)
, (2.71)

Ss,t(ε1, . . . , εn|z)a,bi,j = %s,t(ε1, . . . , εn|z)〈χs|zhR(ε1) a1,b1
i1,j1
· · ·R(εn) an,bn

in,jn
|χt〉, (2.72)

where the family of matrix product operators R
(ε) a,b

i,j ∈ End(F ) are specified by

R
(1) a,b

i,j = R
b,a
j,i , R

(2) a,b
i,j = Q

a,b
i,j , R

(3) a,b
i,j = R

a,b
i,j (2.73)

in terms of (2.67) and (2.68). The leftmost one here is derived from (2.69) and (2.5). The
formulas (2.71) and (2.72) are more efficient than the previous ones (2.42) and (2.43) in that
they are suitable for systematic programming. The necessary input will be provided in the next
subsection.

2.7 Evaluation formula

Substituting (2.73), (2.67), (2.68) into (2.71), (2.72) and using the commutation relation (2.12),
one can express them as linear combinations of Tr

(
zhkm

)
, Tr

(
zhkm(−1)h

)
, 〈χs(z)|(a±)jkm|χt〉,

and 〈χs(z)|(a±)jkm(−1)h|χt〉. These quantities are evaluated explicitly as follows (m ≥ 0):

〈χs(z)|(a±)jkm|χt(w)〉 = 〈χt(w)|km(a∓)j |χs(z)〉, s, t = 1, 2,

(−1)ha± = −a±(−1)h, (−1)hk = k(−1)h, (−1)h|χt(w)〉 = |χt(−w)〉,

Tr
(
zhkm

)
=

q
m
2

1− qmz , Tr
(
zhkm(−1)h

)
=

q
m
2

1 + qmz
,

〈χ1(z)|(a+)jkm|χ1(w)〉 = q
m
2 zj(−q; q)j

(
−qj+m+1zw; q

)
∞(

qmzw; q
)
∞

,

〈χ1(z)|(a−)jkm|χ2(w)〉 = q
m
2 z−j

j∑

i=0

(−1)iq
1
2
i(i+1−2j)

(
j

i

)

q

(
−q2i+2m+1z2w2; q2

)
∞(

q2i+2mz2w2; q2
)
∞

,
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〈χ1(z)|(a+)jkm|χ2(w)〉 = q
m
2 zj

j∑

i=0

q
1
2
i(i+1)

(
j

i

)

q

(
−q2i+2m+1z2w2; q2

)
∞(

q2i+2mz2w2; q2
)
∞

,

〈χ2(z)|(a+)jkm|χ2(w)〉 = θ(j ∈ 2Z)q
m
2 zj
(
q2; q4

)
j/2

(
q2j+2m+2z2w2; q4

)
∞(

q2mz2w2; q4
)
∞

. (2.74)

These formulas are easily derived by only using the elementary identity

∑

j≥0

(ξ; q)j
(q; q)j

ηj =
(ξη; q)∞
(η; q)∞

.

An essential consequence of these formulas are that the matrix elements Str(ε|z)a,bi,j and

Ss,t(ε|z)a,bi,j become rational functions of z and q via appropriate choice of %tr(ε|z) and %s,t(ε|z).
We will specify them explicitly in the next subsection.

When ε = (2, 2, . . . , 2), the formulas (2.71) and (2.72) contain the product Q
a1,b1
i1,j1
· · ·Qan,bnin,jn

.

From (2.68) and the leftmost relation in (2.12), it is expressed in the form (−1)nhQk
∑n

r=1(jr−ir+1)

= (−1)nhQk|j|−|i|+n. Here Q is a polynomial in a+ and a− which can be cast into Q =∑
r≥0 crk

2r by (2.12) whenever the conservation laws (2.53) or (2.54) is satisfied. The coeffi-

cients cr belong to C
(
q

1
2

)
. In particular c0 is nonzero in general. Therefore the formulas (2.74)

are applicable only for |i| ≤ |j|+n to evaluate (2.71) and (2.72) with ε = (2, 2, . . . , 2). The other
case |i| > |j|+ n is covered by first applying (2.46) and (2.48).

2.8 Normalization of Str(ε|z) and Ss,t(ε|z)

Let us fix the normalization by specifying %tr(ε|z) and %s,t(ε|z) in (2.71) and (2.72).
(I) Str

l,m(ε|z) with ε ∈ {1, 3}n in (2.61). We specify the normalization depending on (l,m) as
follows.

If (l,m) ∈ (Z≤0)2, take any k ∈ [1, n] such that εk = 1. Similarly if (l,m) ∈ (Z≥0)2, take any
k ∈ [1, n] such that εk = 3. In either case we choose %tr(ε|z) as

%tr(ε|z) = z−|m|
(
q|l|−|m|z; q2

)
|m|+1(

q|l|−|m|+2z−1; q2
)
|m|
, then Str

l,m(ε|z)|l|ek,|m|ek|l|ek,|m|ek = 1.

If (l,m) ∈ (Z<0,Z>0), take any i, j ∈ [1, n] such that (εi, εj) = (1, 3). Similarly if (l,m) ∈
(Z>0,Z<0), take any i, j ∈ [1, n] such that (εi, εj) = (3, 1). In either case we choose %tr(ε|z) as

%tr(ε|z) = q−|m|
(
1− q|l|+|m|z

)
, then Str

l,m(ε|z)|l|ei,|m|ej|l|ei,|m|ej = 1.

(II) Ss,t(ε|z) with ε = (ε1, . . . , εn) ∈ {1, 3}n in (2.62) and (2.63).
If (s, t) 6= (2, 2), we set r = max(s, t, 2) and choose %s,t(ε|z) as

%s,t(ε|z) =
(zr; qr)∞

(−qzr; qr)∞
, then Ss,t(ε|z)0,00,0 = 1,

where 0 = (0, . . . , 0) ∈ Zn.
If (s, t) = (2, 2), we choose %2,2(ε|z) to be %2,2σ,σ′(ε|z) depending on σ, σ′ in (2.63) as

%2,2±,±(ε|z) = %2,2±,∓(ε|z)−1 =

(
z2; q4

)
∞(

q2z2; q4
)
∞
, then S2,2

+,+(ε|z)0,00,0 = 1,

−q−1S2,2
+,−(ε|z)0,e10,e1

= S2,2
−,+(ε|z)e1,0e1,0

=
1

1− z2 , S2,2
−,−(ε|z)e1,e1e1,e1 =

z2 − q2
1− z2q2 .
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(III) Str
l,m(2, . . . , 2|z) in (2.64). We choose %tr(2, . . . , 2|z) depending on l, m in (2.64) as

%tr(2, . . . , 2|z) = 1 + (−1)n+1ql+m+nz, then Str
l,m(2, . . . , 2|z)le1,me2

le1,me2
= 1. (2.75)

(IV) Ss,t(2, . . . , 2|z) in (2.65) and (2.66). If (s, t) 6= (2, 2), we set r = max(s, t, 2) and choose
%s,t(2, . . . , 2|z) as

%s,t(2, . . . , 2|z) =
((−q)rnzr; qr)∞

((−q)rn+1zr; qr)∞
, then Ss,t(2, . . . , 2|z)0,00,0 = 1.

If (s, t) = (2, 2), we choose %2,2(2, . . . , 2|z) to be %2,2σ,σ′(2, . . . , 2|z) depending on σ, σ′ in (2.66)
as

%2,2±,±(2, . . . , 2|z) = %2,2±,∓(2, . . . , 2|z)−1 =

(
q2nz2; q4

)
∞(

q2n+2z2; q4
)
∞
, then

S2,2
+,+(2, . . . , 2|z)0,00,0 = 1, S2,2

+,−(2, . . . , 2|z)0,e10,e1
= S2,2

−,+(2, . . . , 2|z)e1,0e1,0
=

1

1− q2nz2 ,

S2,2
−,−(2, . . . , 2|z)e1,e1e1,e1 = q

1− q2n−2z2
1− q2n+2z2

.

2.9 Example

Consider S(z)a,bi,j = Str
2,4(2, . . . , 2|z)a,bi,j in (2.64) with n = 3, l = 2, m = 4, i = (101), j = (211).

From the conservation law (2.53) the only nonzero matrix elements are

S(z)002,112101,211 =
q
(
1− q4

)
z
(
1 + q3z

)
(
1 + q5z

)(
1 + q7z

) , S(z)011,121101,211 =

(
1− q4

)
z
(
1− q2 − q4 − q7z

)
(
1 + q5z

)(
1 + q7z

) ,

S(z)020,130101,211 = −q
(
1− q2

)(
1− q4

)
z(

1 + q5z
)(

1 + q7z
) ,

S(z)101,211101,211 =
q2
(
q − z + q2z + 2q4z + q6z − q8z + q7z2

)
(
1 + q5z

)
(1 + q7z

) ,

S(z)110,220101,211 =
q2
(
1− q2

)(
1 + qz + q3z − q7z

)
(
1 + q5z

)(
1 + q7z

) , S(z)200,310101,211 = −q
4
(
1− q2

)
z(1 + qz)(

1 + q5z
)(

1 + q7z
) .

According to (2.71) and (2.73) they are derived from

S(z)002,112101,211 = %tr(z) Tr
(
zhQ0,1

1,2Q
0,1
0,1Q

2,2
1,1

)
, S(z)011,121101,211 = %tr(z) Tr

(
zhQ0,1

1,2Q
1,2
0,1Q

1,1
1,1

)
,

S(z)020,130101,211 = %tr(z) Tr
(
zhQ0,1

1,2Q
2,3
0,1Q

0,0
1,1

)
, S(z)101,211101,211 = %tr(z) Tr

(
zhQ1,2

1,2Q
0,1
0,1Q

1,1
1,1

)
,

S(z)110,220101,211 = %tr(z) Tr
(
zhQ1,2

1,2Q
1,2
0,1Q

0,0
1,1

)
, S(z)200,310101,211 = %tr(z) Tr

(
zhQ2,3

1,2Q
0,1
0,1Q

0,0
1,1

)
,

where %tr(z) = 1 + q9z, which is %tr(2, 2, 2|z) (2.75) with n = 3, l = 2, m = 4. Let us illustrate
the calculation of the top left example. In terms of the number operator without zero point
energy k := q−

1
2k, the relevant Q

a,b
i,j (2.68) are given by

Q
0,1
1,2 =

(
1− q4

)
a+k

2
(−1)h, Q

0,1
0,1 = k

2
(−1)h,

Q
2,2
1,1 =

(
−a−

1− q2 +

(
1− q6

)
a+(a−)2

q2
(
1− q2

)(
1− q4

)
)
k(−1)h.
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Thus Tr
(
zhQ0,1

1,2Q
0,1
0,1Q

2,2
1,1

)
is calculated as

−1− q4
1− q2 Tr

(
zha+k

2
(−1)hk

2
(−1)ha−k(−1)h

)

+
1− q6

q2
(
1− q2

) Tr
(
zha+k

2
(−1)hk

2
(−1)ha+(a−)2k(−1)h

)

= −1 + q2

q4
Tr
(
zh(−1)ha+a−k

5)
+

1− q6
q6
(
1− q2

) Tr
(
zh(−1)h(a+)2(a−)2k

5)

= −1 + q2

q4

(
1

1 + q5z
− 1

1 + q7z

)

+
1− q6

q6
(
1− q2

)
(

1

1 + q5z
− 1 + q2

q2
(
1 + q7z

) +
1

q2
(
1 + q9z

)
)

=
q
(
1− q4

)
z
(
1 + q3z

)
(
1 + q5z

)(
1 + q7z

)(
1 + q9z

) .

Upon multiplication of %tr(z) = 1 + q9z, this agrees with S(z)002,112101,211.

3 Quantum R matrices

3.1 Quantum affine algebras

Let

gtrn = A(1)
n , g1,1n = D

(2)
n+1, g1,2n = A

(2)
2n , g2,1n = Ã

(2)
2n , g2,2n = C(1)

n

be affine Kac–Moody algebras [7]. The Ã
(2)
2n is isomorphic to A

(2)
2n and their difference is only the

enumeration of vertices. We keep it for uniformity of the description. The Drinfeld–Jimbo quan-
tum affine algebras (without derivation operator) Uq = Uq(g

tr
n ), Uq(g

s,t
n ) are the Hopf algebras

generated by ei, fi, k
±1
i , 0 ≤ i ≤ n, satisfying the relations [4, 6]

kik
−1
i = k−1i ki = 1, [ki, kj ] = 0,

kiejk
−1
i = q

aij
i ej , kifjk

−1
i = q

−aij
i fj , [ei, fj ] = δij

ki − k−1i
qi − q−1i

,

1−aij∑

ν=0

(−1)νe
(1−aij−ν)
i eje

(ν)
i = 0,

1−aij∑

ν=0

(−1)νf
(1−aij−ν)
i fjf

(ν)
i = 0, i 6= j, (3.1)

where e
(ν)
i = eνi /[ν]qi !, f

(ν)
i = fνi /[ν]qi ! and [m]q! =

∏m
j=1[j]q. The data (aij)0≤i,j≤n is the Cartan

matrix in the convention of [7]. It is given by

ai,j = 2δi,j −max((log qj)/(log qi), 1)(δi,j+1 + δi,j−1),

where δi,j = θ(i − j ∈ (n + 1)Z) for gtrn and δi,j = θ(i = j) for gs,tn . The data qi in (3.1) are
specified above the associated vertex i, 0 ≤ i ≤ n, in the Dynkin diagrams (see Fig. 1). For
Uq(g

s,t), we have q0 = qs
2/2, qn = qt

2/2 and qi = q, 0 < i < n. The coproduct ∆ has the form

∆k±1i = k±1i ⊗ k±1i , ∆ei = 1⊗ ei + ei ⊗ ki, ∆fi = fi ⊗ 1 + k−1i ⊗ fi. (3.2)

The opposite coproduct is denoted by ∆op = P ◦∆, where P (u⊗ v) = v ⊗ u is the exchange of
the components.
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generated by ei, fi, k
±1
i (0 ≤ i ≤ n) satisfying the relations [4, 6]

kik
−1
i = k−1

i ki = 1, [ki, kj ] = 0,

kiejk
−1
i = q

aij
i ej , kifjk

−1
i = q

−aij
i fj , [ei, fj ] = δij

ki − k−1
i

qi − q−1
i

,

1−aij∑

ν=0

(−1)νe
(1−aij−ν)
i eje

(ν)
i = 0,

1−aij∑

ν=0

(−1)νf
(1−aij−ν)
i fjf

(ν)
i = 0 (i ̸= j),

(3.1)

where e
(ν)
i = eνi /[ν]qi !, f

(ν)
i = fν

i /[ν]qi ! and [m]q! =
∏m

j=1[j]q. The data (aij)0≤i,j≤n is the Cartan
matrix in the convention of [7]. It is given by

ai,j = 2δi,j −max((log qj)/(log qi), 1)(δi,j+1 + δi,j−1),

where δi,j = θ(i − j ∈ (n + 1)Z) for gtrn and δi,j = θ(i = j) for gs,tn . The data qi in (3.1) are
specified above the associated vertex i (0 ≤ i ≤ n) in the Dynkin diagrams:

gtrn = A
(1)
n

1 2 n−1 n

q

0
q q q q

g1,1 = D
(2)
n+1

< >
0 1 2 n−1 n

q
1
2 q q q q

1
2

g2,2 = C
(1)
n

> <
0 1 2 n−1 n

q2 q q q q2

g1,2 = A
(2)
2n

< <
0 1 2 n−1 n

q
1
2 q q q q2

g2,1 = Ã
(2)
2n

> >
0 1 2 n−1 n

q2 q q q q
1
2

For Uq(g
s,t), we have q0 = qs

2/2, qn = qt
2/2 and qi = q (0 < i < n). The coproduct ∆ has the

form

∆k±1
i = k±1

i ⊗ k±1
i , ∆ei = 1⊗ ei + ei ⊗ ki, ∆fi = fi ⊗ 1 + k−1

i ⊗ fi. (3.2)

The opposite coproduct is denoted by ∆op = P ◦∆, where P (u⊗ v) = v ⊗ u is the exchange of
the components.

3.2 q-oscillator algebra

Let Bq be the algebra over C(q
1
2 ) generated by b+,b−, t and t−1 obeying the relations

t t−1 = t−1 t = 1, t b± = q±1b± t, b± b∓ = 1− q∓1t2. (3.3)

We call Bq the q-oscillator algebra. Comparing it with (2.12) we see that the map

ρ : b+ 7→ a+, b− 7→ a−, t 7→ k (3.4)

provides a representation of Bq on the Fock space F .

Figure 1.

3.2 q-oscillator algebra

Let Bq be the algebra over C(q
1
2 ) generated by b+, b−, t and t−1 obeying the relations

tt−1 = t−1t = 1, tb± = q±1b±t, b±b∓ = 1− q∓1t2.

We call Bq the q-oscillator algebra. Comparing it with (2.12) we see that the map

ρ : b+ 7→ a+, b− 7→ a−, t 7→ k (3.3)

provides a representation of Bq on the Fock space F .
The q-oscillator algebra admits families of automorphisms as

b+ 7→ −uqb−tν−1, b− 7→ u−1t−ν−1b+, t 7→ ±t−1,
b+ 7→ ub+tν , b− 7→ u−1t−νb−, t 7→ ±t,

where u ∈ C×, ν ∈ Z. The first family is notable in that it interchanges the creation and the
annihilation operators. In this paper we will be concerned with their special cases:

ω(1)
u : b+ 7→ −ut−1b−, b− 7→ u−1t−1b+, t 7→ −t−1,
ω(3)
u : b+ 7→ ub+, b− 7→ u−1b−, t 7→ t.

The compositions ρ
(ε)
u = ρ ◦ ω(ε)

u , ε = 1, 3, define irreducible representations Bq → End(Fq).
Explicitly they read

ρ(1)u : b+ 7→ −uk−1a−, b− 7→ u−1k−1a+, t 7→ −k−1, (3.4)

ρ(3)u : b+ 7→ ua+, b− 7→ u−1a−, t 7→ k. (3.5)

3.3 Homomorphism from Uq to q-oscillator algebra

Set

κ =
q + 1

q − 1
, d =

−q 1
2

q − q−1 , ds =

(
−iq

1
2

)s2
(
q

1
2
s2 − q− 1

2
s2
)2 , s = 1, 2.
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They satisfy d1 = iκd and d2 = q[2]−2d2. For a parameter z, the map πtrz : Uq(g
tr
n−1) →

B⊗nq
[
z, z−1

]
given by

ej = zδj,0db−j b
+
j+1t

−1
j , fj = z−δj,0db+

j b
−
j+1t

−1
j+1, kj = t−1j tj+1, j ∈ Zn (3.6)

with δj,0 = θ(j ∈ nZ) defines an algebra homomorphism (cf. [5]). On the l.h.s. we have de-
noted πtrz (g) by g for simplicity. Similarly for s, t ∈ {1, 2}, the map πs,tz : Uq(g

s,t
n )→ B⊗nq

[
z, z−1

]

given by

e0 = zs(b+
1 )s, f0 = z−sds(b

−
1 )st−s1 , k0 = (−it1)

s,

ej = db−j b
+
j+1t

−1
j , fj = db+

j b
−
j+1t

−1
j+1, kj = t−1j tj+1, 0 < j < n,

en = dt(b
−
n )tt−tn , fn = (b+

n )t, kn = (−itn)−t (3.7)

defines an algebra homomorphism [14, Proposition 2.1]. We have slightly changed the coefficients
from [14].

3.4 Family of representations of Uq

The compositions

πtrz,u(ε) : Uq
(
gtrn−1

) πtr
z−→ B⊗nq

[
z, z−1

] ρ(ε1)u1
⊗···⊗ρ(εn)

un−→ End
(
F⊗n

)
, (3.8)

πs,tz,u(ε) : Uq
(
gs,tn
) πs,t

z−→ B⊗nq
[
z, z−1

] ρ(ε1)u1
⊗···⊗ρ(εn)

un−→ End
(
F⊗n

)
(3.9)

provide families of representations of Uq(g
tr
n−1) and Uq(g

s,t
n ) labeled by ε = (ε1, . . . , εn) ∈ {1, 3}n

and u = (u1, . . . , un) ∈ (C×)n. Below we present explicit formulas of the generators in these
representations.

3.4.1 Representation πtr
z,u(ε) of Uq(g

tr
n−1) with ε = (ε1, . . . , εn) ∈ {1, 3}n

Let us write down πtrz,u(ε) (3.8) choosing u = (u1, . . . , un) concretely as

ui =

{
u, εi = 1,

u′, εi = 3,

u′

u
= −qd−1 = q

1
2
(
q − q−1

)
. (3.10)

The image of the generators ej , fj , kj is given by

Table 1. Expression in terms of q-oscillators.

(εj , εj+1) (1, 1) (3, 3) (1, 3) (3, 1)

z−δj,0ej da+j a
−
j+1k

−1
j+1 da−j a

+
j+1k

−1
j a+j a

+
j+1 d2a−j a

−
j+1k

−1
j k−1j+1

zδj,0fj da−j a
+
j+1k

−1
j da+j a

−
j+1k

−1
j+1 d2a−j a

−
j+1k

−1
j k−1j+1 a+j a

+
j+1

kj kjk
−1
j+1 k−1j kj+1 −kjkj+1 −k−1j k−1j+1

We see that the interchange (εi, εi+1)↔ (4− εi, 4− εi+1) corresponds to the automorphism
ej ↔ fj , kj ↔ k−1j up to a power of z. From (2.9) they act on F⊗n as (j ∈ Zn)

(εj , εj+1) = (1, 1) :





ej |m〉 = zδj,0 [mj+1]|m + ej − ej+1〉,
fj |m〉 = z−δj,0 [mj ]|m− ej + ej+1〉,
kj |m〉 = qmj−mj+1 |m〉,

(3.11)
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(εj , εj+1) = (1, 3) :





ej |m〉 = zδj,0 |m + ej + ej+1〉,
fj |m〉 = z−δj,0 [mj ][mj+1]|m− ej − ej+1〉,
kj |m〉 = −qmj+mj+1+1|m〉,

(3.12)

(εj , εj+1) = (3, 1) :





ej |m〉 = zδj,0 [mj ][mj+1]|m− ej − ej+1〉,
fj |m〉 = z−δj,0 |m + ej + ej+1〉,
kj |m〉 = −q−mj−mj+1−1|m〉,

(3.13)

(εj , εj+1) = (3, 3) :





ej |m〉 = zδj,0 [mj ]|m− ej + ej+1〉,
fj |m〉 = z−δj,0 [mj+1]|m + ej − ej+1〉,
kj |m〉 = q−mj+mj+1 |m〉.

(3.14)

As is clear from (3.11), (3.12) and (2.50), the representation πtrz,u(ε) (3.8) of Uq
(
A

(1)
n−1
)

on
V = F⊗n decomposes into those on Vl(ε). Each Vl(ε) is irreducible for any ε ∈ {1, 3}n. It is
finite dimensional if and only if ε is uniform, i.e., ε = (1, 1, . . . , 1) or (3, 3, . . . , 3). As a module
over the classical subalgebra Uq(An−1), the V−l(1, 1, . . . , 1) with l ∈ Z≥0 is equivalent to the
degree-l symmetric tensor representation with highest weight vector |le1〉. It corresponds to
the Young diagram of 1 × l row shape. The Vl(3, 3, . . . , 3) with l ∈ Z≥0 is equivalent to its
dual, i.e., the degree-l symmetric tensor of the anti-vector representation with highest weight
vector |len〉. It corresponds to the Young diagram of (n− 1)× l rectangular shape. In these two
cases of the uniform ε, one may regard the base vector |m〉 ∈ Vl(ε) as specifying a configuration
of particles or holes on a ring Zn in terms of their occupation number mj at site j. The
generators ej , fj in (3.11) and (3.14) represent ‘ordinary’ nearest neighbor hopping. In general
the representation Vl(ε) with a non-uniform ε ∈ {1, 3}n corresponds to the mixture of particles
and holes. A site j accommodates only particles if εj = 1 and only holes if εj = 3. The base
vector |m〉 signifies the configuration in which there are mj particles (resp. holes) at site j if
εj = 1 (resp. εj = 3). Then ej in (3.12) and (3.13) for example is interpreted as a particle
hopping from the site j + 1 to j via pair creation and pair annihilation, respectively.

3.4.2 Representation πs,tz,u(ε) of Uq(g
s,t
n ) with ε = (ε1, . . . , εn) ∈ {1, 3}n

Let us write down πs,tz,u(ε) (3.9) concretely for u = (u1, . . . , un) chosen in the same manner
as (3.10). Since (3.6) and (3.7) are the same for 0 < j < n, the corresponding ‘generic’ generators
ej , fj , kj are again given by Table 1 and described concretely as (3.11)–(3.14). The other
‘exceptional’ generators depend on the parameters u, u′ in (3.10) not only via the ratio but
individually. Below we present them with the choice u = −dq−1 and u′ = 1 keeping (3.10).

The representation of e0, f0, k0 are determined according to s = 1, 2 and ε1 = 1, 3 as

(s, ε1) = (1, 1) :





e0|m〉 = zda−1 k
−1
1 |m〉 = z[m1]|m− e1〉,

f0|m〉 = z−1iκa+1 |m〉 = z−1iκ|m + e1〉,
k0|m〉 = ik−11 |m〉 = iq−m1− 1

2 |m〉,
(3.15)

(s, ε1) = (1, 3) :





e0|m〉 = za+1 |m〉 = z|m + e1〉,
f0|m〉 = z−1d1a

−
1 k
−1
1 |m〉 = z−1iκ[m1]|m− e1〉,

k0|m〉 = −ik1|m〉 = −iqm1+
1
2 |m〉,

(3.16)

(s, ε1) = (2, 1) :





e0|m〉 = z2d2q(a−1 )2k−21 |m〉 = z2[m1][m1 − 1]|m− 2e1〉,
f0|m〉 = z−2d2d−2q−1(a

+
1 )2|m〉 = z−2[2]−2|m + 2e1〉,

k0|m〉 = −k−21 |m〉 = −q−2m1−1|m〉,
(3.17)
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(s, ε1) = (2, 3) :





e0|m〉 = z2(a+1 )2|m〉 = z2|m + 2e1〉,
f0|m〉 = z−2d2(a

−
1 )2k−21 |m〉 = z−2

[m1][m1 − 1]

[2]2
|m− 2e1〉,

k0|m〉 = −k2
1|m〉 = −q2m1+1|m〉.

(3.18)

Similarly, the representation of en, fn, kn takes the form according to t = 1, 2 and εn = 1, 3 as

(εn, t) = (1, 1) :





en|m〉 = iκa+n |m〉 = iκ|m + en〉,
fn|m〉 = da−nk

−1
n |m〉 = [mn]|m− en〉,

kn|m〉 = −ikn|m〉 = −iqmn+
1
2 |m〉,

(3.19)

(εn, t) = (3, 1) :





en|m〉 = d1a
−
nk
−1
n |m〉 = iκ[mn]|m− en〉,

fn|m〉 = a+n |m〉 = |m + en〉,
kn|m〉 = ik−1n |m〉 = iq−mn− 1

2 |m〉,
(3.20)

(εn, t) = (1, 2) :





en|m〉 = d2d
−2q−1(a+n )2|m〉 = [2]−2|m + 2en〉,

fn|m〉 = d2q(a−n )2k−2n |m〉 = [mn][mn − 1]|m− 2en〉,
kn|m〉 = −k2

n|m〉 = −q2mn+1|m〉,
(3.21)

(εn, t) = (3, 2) :





en|m〉 = d2(a
−
n )2k−2n |m〉 =

[mn][mn − 1]

[2]2
|m− 2en〉,

fn|m〉 = (a+n )2|m〉 = |m + 2en〉,
kn|m〉 = −k−2n |m〉 = −q−2mn−1|m〉.

(3.22)

If (s, t) 6= (2, 2), the representation πs,tz,u(ε) acts on the space V = F⊗n (2.56) irreducibly. If
(s, t) = (2, 2), it acts on each of V + and V − (2.60) irreducibly.

3.5 Quantum R matrices

Let Uq be either Uq(g
tr
n−1) or Uq(g

s,t
n ). Suppose they have representations on Wz and W ′z de-

pending on z called the spectral parameter9. Form the tensor product representations of Uq on
Wx ⊗W ′y by the coproduct ∆ and ∆op defined in (3.2). Let R be their intertwiner, meaning
that R ∈ End(Wx ⊗W ′y) is an element satisfying10

∆op(g)R = R∆(g) ∀ g ∈ Uq. (3.23)

We call the intertwining relation or commutativity (3.23) as the Uq symmetry of R. It is
a consequence of the g = ej , fj , kj (0 ≤ j ≤ n) cases:

(kj ⊗ kj)R(z) = R(z)(kj ⊗ kj), (3.24)

(ej ⊗ 1 + kj ⊗ ej)R(z) = R(z)(1⊗ ej + ej ⊗ kj), (3.25)
(
1⊗ fj + fj ⊗ k−1j

)
R(z) = R(z)

(
fj ⊗ 1 + k−1j ⊗ fj

)
. (3.26)

We have written R as R(z) assuming that it depends on x and y only via the ratio z := x/y. All
the examples treated in this paper have this property. If Wx ⊗W ′y is irreducible, (3.24)–(3.26)
characterize R(z) uniquely up to an over all scalar. If further Wx1 ⊗W ′x2 ⊗W ′′x3 is irreducible,
the Yang–Baxter equation

R1,2(x1,2)R1,3(x1,3)R2,3(x2,3) = R2,3(x2,3)R1,3(x1,3)R1,2(x1,2) (3.27)

9By a representation Wz we actually mean an algebra homomorphism πz : Uq 7→ End(W ) depending on z.
10In the notation of the previous footnote, ∆(op)(g) actually means (πx ⊗ π′y) ◦∆(op)(g).
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is valid, where xi,j = xi/xj and Ri,j(xi,j) acts on the ith and the jth components (from the
left) of Wx1 ⊗W ′x2 ⊗W ′′x3 as R(xi,j) and identity elsewhere. We call the elements R satisfying
(3.23)–(3.27) quantum R matrices. In short the Uq symmetry serves as a characterization of
a quantum R matrix up to the irreducibility of the relevant representations [4, 6].

3.6 Uq symmetry of Str(ε|z) and Ss,t(ε|z)

Let us state the Uq symmetry for the locally finite solutions to the Yang–Baxter equation Str(ε|z)
and Ss,t(ε|z) in (2.61)–(2.64). We will be concerned with the spaces (2.56)–(2.60). We also
assume z = x/y throughout this subsection.

(I) Str(ε|z) with ε ∈ {1, 3}n in (2.61). To recall this, see (2.32) for the matrix product
construction, (2.51) for the weight conservation and (2.35) for the Yang–Baxter equation. As
for the relevant representations Wz and W ′z, we take the both to be

πtrz,u(ε) : Uq
(
A

(1)
n−1
)
→ End(V )

defined in (3.8). The parameters u ∈ (C×)n are arbitrary and not restricted to (3.10).

Theorem 3.1. The Str(ε|z) with ε ∈ {1, 3}n enjoys the Uq
(
A

(1)
n−1
)

symmetry

∆op(g)Str(ε|z) = Str(ε|z)∆(g) ∀ g ∈ Uq
(
A

(1)
n−1
)

in the tensor product representation πtrx,u(ε)⊗ πtry,u(ε).

According to the explanation after (3.14), Theorem 3.1 actually holds for each component
Str
l,m(ε|z) in (2.61) as an equality in End(Vl(ε) ⊗ Vm(ε)). The space Vl(ε) ⊗ Vm(ε) is finite

dimensional if and only if ε = (3, . . . , 3) or ε = (1, . . . , 1). It is finite dimensional and nonzero if
and only if l,m ≥ 0, ε = (3, . . . , 3) or l,m ≤ 0, ε = (1, . . . , 1). In these cases Str

l,m(ε|z) reproduces
the well studied quantum R matrices for the symmetric tensor representations or their dual
representations. This fact was announced in [3, Section 5] and proved in [12, Appendix B].

(II) Ss,t(ε|z) with ε ∈ {1, 3}n and s, t ∈ {1, 2} in (2.62) and (2.63). To recall this, see (2.33)
for the matrix product construction, (2.52) for the weight conservation and (2.35) for the Yang–
Baxter equation. We introduce a slight gauge transformation by

S̃s,t(ε|z) = (K ⊗ 1)Ss,t(ε|z)
(
1⊗K−1

)
, K|m〉 =

(
−iq

1
2
)|m|ε |m〉,

where |m|ε is defined in (2.50). It is easy to see that S̃s,t(ε|z) also satisfies the Yang–Baxter
equation. As for the relevant representations Wz and W ′z, we take the both to be

πs,tz,u(ε) : Uq(g
s,t
n )→ End(V )

defined in (3.9). The parameters u ∈ (C×)n are arbitrary and not restricted to (3.10).

Theorem 3.2. The S̃s,t(ε|z) with ε ∈ {1, 3}n and s, t ∈ {1, 2} enjoys the Uq(g
s,t
n ) symmetry

∆op(g)S̃s,t(ε|z) = S̃s,t(ε|z)∆(g) ∀ g ∈ Uq(gs,tn ) (3.28)

in the tensor product representation πs,tx,u(ε)⊗ πs,ty,u(ε).

When (s, t) = (2, 2), Theorem 3.2 holds for each component S̃s,tσ,σ′(ε|z) in (2.63) as an equality

in End(V σ ⊗ V σ′). For the special case ε = (3, . . . , 3), this result was established in [12] whose
proof was further refined in [14].

(III) Str(2, . . . , 2|z) in (2.64). To recall this, see (2.32) for the matrix product construction
and (2.53) for the weight conservation. The relevant Yang–Baxter equation is (2.36) with (2.37).
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It involves Str(3, . . . , 3|z) treated in the above (I) in addition to the Str(2, . . . , 2|z) under con-
sideration. The relevant representations are given by

πtrz,u(3, . . . , 3) : Uq
(
A

(1)
n−1
)
→ End(V ) for Wz, (3.29)

πtrz,u(1, . . . , 1) : Uq
(
A

(1)
n−1
)
→ End(V ) for W ′z (3.30)

in terms of (3.8), where u = (u1, . . . , un) ∈ (C×)n is arbitrary. This is a distinct situation from
the previous (I) and (II) in that the left and the right components in Wx ⊗W ′y differ not only
by the spectral parameters.

Theorem 3.3. The Str
(
2, . . . , 2|z−1

)
enjoys the Uq

(
A

(1)
n−1
)

symmetry

∆op(g)Str
(
2, . . . , 2|z−1

)
= Str

(
2, . . . , 2|z−1

)
∆(g) ∀ g ∈ Uq

(
A

(1)
n−1
)

(3.31)

in the tensor product representation πtrx,u(3, . . . , 3)⊗ πtry,u(1, . . . , 1).

The theorem actually holds for each component Str
l,m

(
2, . . . , 2|z−1

)
in (2.64) as an equality

in End(Vl ⊗ Vm). From the explanation after (3.14) the corresponding restrictions of (3.29) to
Vl = Vl(3, . . . , 3) is the dual of the degree-l symmetric tensor representation. Similarly the re-
striction of (3.30) to Vm = V−m(1, . . . , 1) is the degree-m symmetric tensor representation. Thus
Str
l,m

(
2, . . . , 2|z−1

)
provides an example of R matrix that acts on a pair of dual representations.

3.7 Sketch of proof

Proofs of the Uq symmetry similar to Theorems 3.1, 3.2 and 3.3 have been detailed in many
circumstances in the earlier works [17, Section 7], [12, Section 4.2], [13, Section 5] and [14,
Section 4.3]. In fact the method in the last literature is the simplest as far as the building block
of the matrix product is the 3d R only. It is applicable to all the theorems in the previous
subsection. Therefore we shall only illustrate the two typical cases different from ε = (3, . . . , 3),
which have not been treated in [14].

Proof of (3.28) for t = 1, εn = 1 and g = fn. First we compute the image of the generators
fn, kn ∈ Uq by πs,tz,u(ε) according to (3.9)

fn
πs,1
z7−→ b+

n

ρ
(ε1)
u1
⊗···⊗ρ(1)un7−→ ρ(1)un (b+

n ) = −unk−1n a−n ,

kn
πs,1
z7−→ it−1n

ρ
(ε1)
u1
⊗···⊗ρ(1)un7−→ ρ(1)un

(
it−1n

)
= −ikn,

where the left arrows and the right equalities are due to (3.7)|t=1 and (3.4), respectively. It is
easy using the coproduct (3.2) to rewrite the commutativity (3.28) with g = fn as

(
1⊗ fn + f̃n ⊗ k−1n

)
Ss,1(z) = Ss,1(z)

(
fn ⊗ 1 + k−1n ⊗ f̃n

)
, (3.32)

where f̃n = K−1fnK. We have f̃n = iq−
1
2 fn combining the facts fn|m〉 ∝ |m − en〉 and

|m|ε = −mn + · · · in (2.50) due to εn = 1. When (2.33) is substituted into (3.32), fn and kn
only touch the spaces labeled by αn, βn in (2.33). Therefore it suffices to show

[
1⊗

(
1⊗ k−1a− − q− 1

2k−1a− ⊗ k−1
)]
R|χ1〉

= R
[
1⊗

(
k−1a− ⊗ 1− q− 1

2k−1 ⊗ k−1a−
)]
|χ1〉.

The index n has become unnecessary here and is hence dropped. Instead the extra 1⊗ is attached

remembering that the tensor cube here corresponds to “a⊗αn⊗βn” in R
(1)
αn,βn

= Ra,αn,βn (2.34).
Relabeling them naturally as 1, 2, 3, we are to left to verify

(
k−13 a−3 − q−

1
2k−12 a−2 k

−1
3

)
R|χ1〉 − R

(
k−12 a−2 − q−

1
2k−12 k−13 a−3

)
|χ1〉 = 0, (3.33)
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where |χ1〉 lives in the first (label 1) component. Using (2.8), (2.14)–(2.16) and (2.19) one can
rewrite the first two terms as

k−13 a−3 R|χ1〉 = k−13 k−12 (k2a
−
3 )R|χ1〉 = Rk−13 k−12 (k1a

−
3 + k3a

−
2 a

+
1 )|χ1〉

= Rk−13 k−12 k1a
−
3 |χ1〉+ Rk−12 a−2 (1− q− 1

2k1)|χ1〉,
−q− 1

2k−12 a−2 k
−1
3 R|χ1〉 = −q− 1

2Rk−12 k−13 (a−1 a
−
3 − k1k3a

−
2 )|χ1〉

= −q− 1
2Rk−12 k−13 a−3

(
1 + q

1
2k1

)
|χ1〉+ q−

1
2k1k

−1
2 a−2 |χ1〉.

Now all the terms are of the form R(· · · )|χ1〉 and (3.33) follows.
Proof of (3.31) for g = e0. From (3.6) and (3.4), (3.5) we have

πtrx,u(3, . . . , 3) : e0 7→ xdu1u
−1
n a−n a

+
1 k
−1
n , k0 7→ k−1n k1,

πtry,u(1, . . . , 1) : e0 7→ ydu1u
−1
n a+n a

−
1 k
−1
1 , k0 7→ knk

−1
1 .

In (3.31), the representation
(
πtrx,u(3, . . . , 3)⊗πtry,u(1, . . . , 1)

)
∆(op)(e0) acts on (2.32)|ε=(2,...,2) only

through the part R
(2)
αn,βn

z−h2R
(2)
α1,β1

, where R
(2)
αn,βn

has been brought to the left by the cyclicity

of the trace. Let us relabel this as R1,2,3z
−h2R1′,2,3′ after applying (2.34). Now the relevant

indices become 1, 1′, 2, 3, 3′ and (2.32) is reduced to

(
za−1 a

+
1′k
−1
1 + a+3 a

−
3′k
−1
1 k1′k

−1
3′
)
R1,2,3z

−h2R1′,2,3′

= R1,2,3z
−h2R1′,2,3′

(
a+3 a

−
3′k
−1
3′ + za−1 a

+
1′k
−1
1 k3k

−1
3′
)
. (3.34)

All the four terms here can be converted into the form R1,2,3(· · · )z−h2R1′,2,3′ by means of (2.8)
and (2.13)–(2.16) as follows:

za−1 a
+
1′k
−1
1 R1,2,3z

−h2R1′,2,3′ = zR1,2,3a
+
1′(k3a

−
1 + k1a

−
2 a

+
3 )k−11 k−12 z−h2R1′,2,3′ ,

a+3 a
−
3′k
−1
1 k1′k

−1
3′ R1,2,3z

−h2R1′,2,3′ = R1,2,3(k1a
+
3 + k3a

−
1 a

+
2 )k−11 k−12 a−3′k1′k

−1
3′ z
−h2R1′,2,3′ ,

R1,2,3z
−h2R1′,2,3′a

+
3 a
−
3′k
−1
3′ = R1,2,3z

−h2a+3 (k1′a
−
3′ + k3′a

+
1′a
−
2 )k−12 k−13′ R1′,2,3′

= R1,2,3a
+
3 (k1′a

−
3′ + zk3′a

+
1′a
−
2 )k−12 k−13′ z

−h2R1′,2,3′ ,

R1,2,3z
−h2R1′,2,3′za

−
1 a

+
1′k
−1
1 k3k

−1
3′ = zR1,2,3z

−h2a−1 k
−1
1 k3(k3′a

+
1′ + k1′a

+
2 a
−
3′)k

−1
2 k−13′ R1′,2,3′

= R1,2,3a
−
1 k
−1
1 k3(zk3′a

+
1′+k1′a

+
2 a
−
3′)k

−1
2 k−13′ z

−h2R1′,2,3′ .

Now (3.34) can directly be checked.
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