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Abstract. We define an elliptic version of the stable envelope of Maulik and Okounkov for
the equivariant elliptic cohomology of cotangent bundles of Grassmannians. It is a version
of the construction proposed by Aganagic and Okounkov and is based on weight functions
and shuffle products. We construct an action of the dynamical elliptic quantum group
associated with gl, on the equivariant elliptic cohomology of the union of cotangent bundles
of Grassmannians. The generators of the elliptic quantum groups act as difference operators
on sections of admissible bundles, a notion introduced in this paper.
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1 Introduction

Maulik and Okounkov [12] have set up a program to realize representation theory of quantum
groups of various kinds on torus equivariant (generalized) cohomology of Nakajima varieties.
A central role is played by the stable envelopes, which are maps from the equivariant cohomology
of the fixed point set of the torus action to the equivariant cohomology of the variety. Stable
envelopes depend on the choice of a chamber (a connected component of the complement of
an arrangement of real hyperplanes) and different chambers are related by R-matrices of the
corresponding quantum groups. The basic example of a Nakajima variety is the cotangent bundle
of the Grassmannian Gr(k,n) of k-planes in C". The torus is T' = U(1)" x U(1), with U(1)"
acting by diagonal matrices on C" and U(1) acting by multiplication on the cotangent spaces.
Then the Yangian Y (gl,) acts on Hp(U)_T*Gr(k,n)) and the action of generators is described
geometrically by correspondences. It turns out that this representation is isomorphic to the
tensor products of n evaluation vector representations with the equivariant parameters of U(1)"
as evaluation points and the equivariant parameter of U(1) as the deformation parameter of the
quantum group. The choice of a chamber is the same as the choice of an ordering of the factors in
the tensor product. The same holds for the affine quantum universal enveloping algebra Uq(QTIQ)
if we replace equivariant cohomology by equivariant K-theory. As was shown in [8, 14], the stable
envelopes, which realize the isomorphisms, are given by the weight functions, which originally
appeared in the theory of integral representations of solutions of the Knizhnik—Zamolodchikov
equation, see [19, 20]. Their special values form transition matrices from the tensor basis to
a basis of eigenvectors for the Gelfand—Zetlin commutative subalgebra.

This paper is a contribution to the Special Issue on Elliptic Hypergeometric Functions and Their Applications.
The full collection is available at https://www.emis.de/journals/SIGMA /EHF2017.html
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The recent preprint [1] of Aganagic and Okounkov suggests that the same picture should hold
for equivariant elliptic cohomology and elliptic dynamical quantum groups and this is the subject
of this paper. The authors of [1] define an elliptic version of the stable envelopes and show, in
the example of the cotangent bundle of a projective space, stable envelopes corresponding to
different orderings are related to the fundamental elliptic dynamical R-matrices of the elliptic
dynamical quantum group Er,(gly). Our paper is an attempt to understand the elliptic stable
envelope in the case of cotangent bundles of Grassmannians. In particular we give a precise
description of the space in which the stable envelope takes its values. Our construction of
stable envelopes is based on elliptic weight functions. In Appendix A we also give a geometric
characterization, in terms of pull-backs to the cohomology of fixed points, in the spirit of [12].

While our work is inspired by [1], we do not know whether the two constructions are equivalent
or not. The interesting project of understanding the exact relation between our construction
and the construction of Aganagic—Okounkov requires more work.

Compared to equivariant cohomology and K-theory, two new features arise in the elliptic
case. The first new feature is the occurrence of an additional variable, the dynamical parameter,
in the elliptic quantum group. It also appears in [1], under the name of Kéhler parameter, in
an extended version of the elliptic cohomology of Nakajima varieties. The second is a general
feature of elliptic cohomology: while T-equivariant cohomology and K-theory are contravariant
functors from T-spaces to supercommutative algebras, and can thus be thought of as covariant
functors to affine superschemes,! in the elliptic case only the description as covariant functor to
(typically non-affine) superschemes generalizes straightforwardly.

Our main result is a construction of an action of the elliptic quantum group associated with gl
on the extended equivariant elliptic cohomology scheme ET(Xn) of the union X,, = U}}_; X}, of
cotangent bundles Xy, , = T*Gr(k,n) of Grassmannians. The meaning of this is that we define
a representation of the operator algebra of the quantum group by difference operators acting
on sections of a class of line bundles on the extended elliptic cohomology scheme, which we call
admissible bundles: up to a twist by a fixed line bundle, admissible bundles on ET(XIM) are
pull-backs of bundles on EU(n)XU(l)(pt) (by functoriality there is a map corresponding to the
map to a point and the inclusion of the Cartan subalgebra T — U(n) x U(1)). The claim is
that there is a representation of the elliptic quantum group by operators mapping sections of
admissible bundles to sections of admissible bundles.

This paper may be considered as an elliptic version of the paper [16] where analogous con-
structions are developed for the rational dynamical quantum group Ey(gly).

Notation

For a positive integer n, we set [n] = {1,...,n}. It K is a subset of [n] we denote by |K| its
cardinality and by K its complement. Throughout the paper we fix 7 in the upper half plane
and consider the complex elliptic curve E = C/(Z + 7Z). The odd Jacobi theta function

. 00 1— j627riz 1— je—27TiZ }
o) = Sz [ U= P ™) - (L1)
— (1 - qj)

is normalized to have derivative 1 at 0. It is an entire odd function with simple zeros at Z 4 7Z,
obeying #(z 4+ 1) = —60(z) and

0(z+ 1) = —e ™T2TEQ (),

!The reader may safely ignore the super prefixes, as we only consider spaces with trivial odd cohomology, for
which one has strictly commutative algebras.
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2 Dynamical R-matrices and elliptic quantum groups

2.1 Dynamical Yang—Baxter equation

Let h be a complex abelian Lie algebra and V' an h-module with a weight decomposition V' =
®pep+ V), and finite dimensional weight spaces V,,. A dynamical R-matrix with values in Endy(V®
V') is a meromorphic function (z,y,\) — R(z,y,A) € Endy(V ® V) of the spectral parameter
z € C, the deformation parameter y € C and the dynamical parameter A € h*, obeying the
dynamical Yang—Baxter equation

R(2’7 Y, A — yh(g))(u)R(z + w,y, /\)(13)}%(107 Y, — yh(l))(23)

= R(w,y, )\)(23)R(z +w,y, A — yh(Q))(lg)R(z, Yy, A — yh(3))(12) (2.1)
in End(V ® V ® V) and the inversion relation
R(z,9, 0" R(=2,5, ) = 1d (22)

in End(V ® V). The superscripts indicate the factors in the tensor product on which the
endomorphisms act non-trivially and h is the element in h* @ End(V') defined by the action of bh:

for example R(z, Y, A — yh(?’))(lz) acts as R(z,y, A —yp3) @ Id on V,, @ Vi, ® V.

Example 2.1 ([3]). Let h ~ CV be the Cartan subalgebra of diagonal matrices in gly(C).
Let V = @Z-]LVEZ. the vector representation with weights €;(z) = x;, € h and one-dimensional
weight spaces. Let Ej; be the N x N matrix with entry 1 at (¢,j) and 0 elsewhere. The elliptic
dynamical R-matrix for gly is?

Z y7 ZE11®Ezz+Z Z y7 Ezz® ]+ZB2 y7 )Eij®E]fu
7] 7]
where
_ =)0 +y) _ 0=+ Nby)
Oé(Z,y,/\) - 9(2—1/)0()\)’ ﬁ(zvyv)‘) - Q(Z—y)e(A)

It is a deformation of the trivial R-matrix R(z,0,\) = idygy.

A dynamical R-matrix defines a representation of the symmetric group S, on the space of
meromorphic functions of (21, ..., zn,y, A) € C" x C x h* with values in V®". The transposition
si=(,i+1),i=1,...,n—1, acts as

fer Sy, Nsif, SizyN) = R(zi — zig,y, A —y Y RU)EFD PG (9 3)
j=i+2

where P € End(V ® V) is the flip u ® v — v ® u and s} acts on functions by permutation of z;
with z;41.

To a dynamical R-matrix R there corresponds a category “of representations of the dynamical
quantum group associated with R”. Fix y € C and let K be the ﬁeld of meromorphic functions
of A € h* and for p € h* let 7; € Aut(K) be the automorphism 7, f(A) = f(A +yu). An object
of this category is a K-vector space W = @©,¢cp+W),, which is a semisimple module over b, with
finite dimensional weight spaces W,,, together with an endomorphisms L(w) € Endy(V ® W),
depending on w € U C C for some open dense set U, such that

*We use the convention of [5]. This R-matrix is obtained from the one introduced in [3] by substituting
y = —27 and replacing z by —z.
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(i) Lwue fv=>G(de7, f)lLwuev, feK ueV,veW.
(ii) L obeys the RLL relations:

R(wy —wa, y, A — yh®) "D L(w)) 9 L (w5) )
= L(wg)(QS)L(wl)(lg)R(wl — wa, ¥, )\)(12).

Morphisms (W1, Ly, ) — (Wa, Lyy,) are K-linear maps ¢: Wi — Wa of h-modules, commuting
with the action of the generators, in the sense that Ly, (w)idy ® ¢ = idy ® ¢ Ly, (w) for all w
in the domain of definition. The dynamical quantum group itself may be defined as generated
by Laurent coefficients of matrix elements of L(w) subject to the RLL relations, see [11] for
a recent approach in the case of elliptic dynamical quantum groups and for the relations with
other definitions of elliptic quantum groups.

The basic example of a representation is the vector evaluation representation V(z) with
evaluation point z € C. The vector representation has W = V ®¢ K and

Lw)v®u=R(w —z,y, \)v & 72 ,u, v eV, ue Ww.

Here 72 (v® f) = v ® 7, fforveV and f €K, and R acts as a multiplication operator.
More generally we have the tensor product of evaluation representations V(z1) ® - -- ® V(zy,)
with W = V®" @ K, and, by numbering the factors of V@ V" by 0,1,...,n,

n (01) n (02)
L(U])U@’U,:R<’w—21,y7)\—y2h(l)> R<w_225ya)\_yzh(Z)>
=3

i=2
X R(w — zn, v, )\)(O’”)v ®7,u, v eV, u € W. (2.4)
For generic z1,..., 2, the tensor products does not essentially depend on the ordering of the

factors: the operators S; defined above are isomorphisms of representations

V(1)@ @ V(%) @V (2i41) @@ V(zp) = V(z1) ® -
RV (zit1) @V (z) @ - @ V(zy).
Remark 2.2. It is convenient to consider L-operators L(w), such as (2.4), which are meromor-

phic functions of w and are thus only defined for w in an open dense set. But one may prefer
to consider only representations with L(w) defined for all w € C. This may be obtained for the

n
representation given by (2.4) by replacing L(w) by the product of L(w) with [] 6(w — z, + y).
a=1

2.2 Duality and gauge transformations

Suppose that R(z,y,)) is a dynamical R-matrix with h-module V. Let VV = ¢,(V"), with
weight space (VY), the dual space to V,,. Then RY(z,y,\) = (R(z,y,)\)_l)*, the dual map
to R(z,y,\)7}, is a dynamical R-matrix with values in Endy(VY @ V). It is called the dual
R-matrix to R.

Another way to get new R-matrices out of old is by a gauge transformation. Let ¢y (1))
be a meromorphic function on C x h* with values in Auty(V). Let ¢ygv(A) = vy (X —

yh(z))(l)q/’V()‘)@) € Endy(V ® V). Then
Ry(2,9,A) = dvev(\) " R(z, 9, Nvey ()Y

is another dynamical R-matrix. The corresponding representations of the symmetric group are
related by the isomorphism

- LN
u}V@n(A):HW(A_y 3 h(a)) .
i=1

j=i+1
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2.3 The elliptic dynamical quantum group E, ,(gl,)

In this paper, we focus on the dynamical quantum group E; ,(gly). The corresponding R-matrix
is the case N = 2 of Example 2.1. With respect to the basis v1 ® v1, v1 ® v, V2 ® V1, V2 ® V2,

0 0
a(z,y,A)  B(zy,A)
5(27%—/\) Oé(Z,y, _)‘)
0 0

R(z,y,\) =

o O O
— o O O

where A = Ay — A\9. Since R depends only on the difference Ay — Ag it is convenient to replace b

by the 1-dimensional subspace C spanned by h = diag(1l,—1). Then, under the identification

h = C via the basis h, v; has weight 1 and ve has weight —1. Let (W, L) be a representation
2

of Ery(gly) and write L(w) = > Ej; ® Lijj(w). Then L;j(w) maps W), to W, o;_;) and for
ij=1

fA) €K, Lip(w)f(X) = f(A+y)Lia(w) and Liy(w) f(A) = f(A = y) L (w).

Example 2.3 (the vector representation V(z)). Let V = C? with basis vy, v2, then

Lii(w)vy = vy, Loo(w)va = vy,

~B(w—2)0(A+y) 0w —2)0(\ —y)
T3V R e 173 Vit
Lis(w)vy = _9(>\ +w — 2)0(y) Lot (w)vs = _0()\ —w+ 2)0(y) o,

0w —=— 0N~ 0w — =z —9)0(\)

and the action on other basis vectors is 0.

2.4 The Gelfand—Zetlin subalgebra

Let W be a representation of the elliptic dynamical quantum group E;,(gly). Then Los(w),
w € C and the quantum determinant [5]

O(A —yh)

A =750

(L11(w + y)Loz(w) — Lo1(w + y) L12(w)) (2.5)

generate a commutative subalgebra of Endy (). It is called the Gelfand-Zetlin subalgebra.

3 Shuffle products and weight functions

Weight functions are special bases of spaces of sections of line bundles on symmetric powers of
elliptic curves. They appear in the theory of hypergeometric integral representation of Knizhnik—
Zamolodchikov equations. In [4] they were characterized as tensor product bases of a space of
function for a suitable notion of tensor products. In this approach the R-matrices for highest
weight representations of elliptic quantum groups arise as matrices relating bases obtained from
taking different orderings of factors in the tensor product. We review and extend the construction
of [4] in the special case of products of vector representations.

3.1 Spaces of theta functions

Definition 3.1. Let z € C",y € C,\ € C and define ©, (2,y,)) to be the space of entire
holomorphic functions f(t1,...,tx) of k variables such that

1. For all permutations o € Sy, f(tg(l), e 7to(k)) = f(t1,...,tk).
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2. For all r, s € Z, the meromorphic function

t, ..t
gt ) = k:f(nl k)
[T IT 0(tj — za)
j=la=1
obeys

glt1, .t sty ) =TSO g ).

Definition 3.2. Let z € C", y € C, A € C and define @;(z,y, A) to be the space of entire
holomorphic functions f(t1,...,tx) of k variables such that

L. For all permutations o € Sk, f(ty(1);---»tow)) = f(t1, .-, th).

2. For all r, s € Z, the meromorphic function

t, ..t
g(tly-"7tk) = k ;}j( ! k) 9
IT I1 0t — za +9)
j=1a=1

obeys

gltr, iAoty ty) = e 2O g ).

Remark 3.3. These spaces are spaces of symmetric theta functions of degree n in k variables and

have dimension ("+]l: _1). Actually ©~ depends on the parameters only through the combination
n

> 24+ A — ky and ©F through the combination Y 2, — A — (n — k)y.

a=1 a=1
Example 3.4. For z € Cand all K =0,1,2,..., ©, (2,9,)) is a one-dimensional vector space
spanned by

w]g_(t;zaya)‘): 9()\—15]4-2—]6:[/),

—

<
Il
-

@;(z, Y, A) is a one-dimensional vector space spanned by

BN+t — 2+ (1 —k)y).

—

w,j(t; Z,Y,\) =

<
Il
—_

Remark 3.5. For z € C", y,A € C, 0, (2,9,)) = @;(z,y, —\—(n—2k)y) and w,j(t; Z2,Y,\) =
(=D w (t;2,y,—A — (1 — 2k)y). It is however better to keep the two spaces distinct as they
will be given a different structure.

3.2 Shuffle products

Let Sym denote the map sending a function f(t1,..., ) of k variables to the symmetric function

Z f(ta(l)v s 7ta(k:))'

UGSn
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Proposition 3.6. Let n = n’ +n”, k = k' + k" be non-negative integers, = € C", 2/ =
(2155 2n), 2" = (Zws1y - - -5 2n). Then the shuffle product

*! Gf’(zlvyv A =+ y(n” - 2k”)) ® @k”( /I7y7 A) - @]:gl;:(zayv )‘)7
sending f ® g to
f * g(t) ]C/'k//' Sym (f(tlv cee 7tk’/)g(tk/+1) R tk)gﬁi(t, 2, y))a

with

“(t,z,y) = H H tlt_:y H H9tz—2a H H 0(t; — 2+ y),

j=1l=k"4+1 I=Kk'+1a=1 j=1lb=n’'+1
t —tl+y
(t, z,y) = HH p— H Hth—za—I—yH H@t—zb
J=1i=k+1 Doz k1 a=1 J=1b=n'+1

is well-defined and associative, in the sense that (f x g) x h = f * (g x h), whenever defined.

Remark 3.7. In the formula for f x ¢ in Proposition 3.6 we can omit the factor 1/kIk"!
and replace the sum over permutations defining Sym by the sum over (k/, k”)-shuffles, namely
permutations o € S such that o(1) < --- < o(k') and o(K +1) < --- < o (k).

Proof. This is essentially the first part of Proposition 3 of [4] in the special case of weights
A; = 1. The proof is straightforward: the apparent poles at t; = t; are cancelled after the
symmetrization since 6(t; —t;) is odd under interchange of ¢; with t;. Thus f * ¢ is a symmetric
entire function. One then checks that every term in the sum over permutations has the correct
transformation property under lattice shifts. |

Proposition 3.8. The maps * of Proposition 3.6 define isomorphisms
DO (2, 4. A +y(n” = 2K") © O 1, (2", 5, A) = 5 (2,9, A)
for generic z, y, A.

We prove this Proposition in 3.12 below.

3.3 Vanishing condition

The shuffle product * preserves subspaces defined by a vanishing condition. It is the case of
the fundamental weight of a condition introduced in [4, Section 8] for general integral dominant
weights.

Let (2,5,A) € C" x C x C. We define a subspace O (z,y,A) C ©7(z,y,)) by a vanishing
condition:

6% (2. \) = 05 (2,4, \) if k=0,1,
g {f:f(tlv"'vtk‘—szavZa*y):07]-Sagn)tie(c} lkaQ

Example 3.9. For n =1,

0 (z,y,\) =C, k=0,1,

Of(z,y,\) = {0 > o

Indeed, the condition is vacuous if £k < 1 and if £ > 2 then wk E(zz—y,ts,...) = 0\—ky)O(\+
(1—-k)y ) times a nonzero function. For k = 1, n > 1, ©F(z,4,\) = OF(z,y,\). For k = 2,
n=2, @ (21, 22,y, A) is a one-dimensional subspace of the three—dimensional space G)ét(z, Y, A).
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Proposition 3.10. The shuffle product restricts to a map
DO (4. A +y(n" = 2K") @ O 1 (2", 9, A) = 5 (2,9, M),
which is an isomorphism for gemeric values of the parameters.

The proof is postponed to Section 3.12 below. By iteration we obtain shuffle multiplication
maps

Z y, @ ®@ (Za,y,)\—y Z (Qka—1)> —>(:)ki(21,---,zn,y,)\),
Ykq=k a=1 b=a+1

defined for (z,y,A) € C" x C x C and k = 0,1,2,.... The direct sum is over the (Z) n-tuples
(k1,...,kn) with sum k and k, € {0,1},a=1,...,n

Corollary 3.11. The maps @,f(z, Yy, A) are isomorphisms for generic (z,y,\) € C" x C x C.

Thus, for generic z,y, A € C" x C x C, @f(z,y, A) has dimension (Z) and is zero if k > n.

3.4 Duality

Proposition 3.12. The identification
0: O, (2,y,\) = @,‘:(z, Yy, —A — (n —2k)y)

of Remark 3.5 (the identity map) restricts to an isomorphism
Oy (2,4, ) = O (2,5, —A — (n = 2k)y),

also denoted by o. For f € ©,, and g € ©,,, as in Proposition 3.6, the shuffle product o(g) * o(f)
1s well-defined and obeys

o(f xg) = o(g) * o(f)-

Proof. It is clear that the vanishing condition is preserved. The last claim follows from the
identity

w_(tv Z7y) = 90+(tk/+17 N TN A PR T Bn/4ly ey RnyRlsev s Zn/7y)
for the functions appearing in the definition of the shuffle product. |

Remark 3.13. For n = 1 we have o(w;,) = (—1)kw;, see Example 3.4.

3.5 Weight functions
For (z,y,\) € C" x C x C, let
é:t (Z) Y, )‘) = @Z:()é]f(z, Y, >‘)

It is an h-module with @f of weight —n+2k. Let v1, va be the standard basis of C2. Itn=1, we
identify ©%(z,y, \) with C? via the map wli 1, woi  vg. Then ®*(z,y,\) = @kéf(z,y, A)
is a linear map

(C2)®n — 0% (2,1, \).
It is a homomorphism of h-modules. Then a basis of (C2)®n is labeled by subsets I of [n] =

{1,...,n} v =vj1) ®@ -+ @ V() With j(a) =2 ifa € [ and j(a) =1ifa € I, the complement
of I.
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Definition 3.14. The weight functions w?c(t; z,y,A) are the functions

Wi (52,9, A) = OE(2,y, vy € ©F (2,9, \).

In particular, for n =1, wg = w(jf, wﬁ} = wl Corollary 3.11 implies:

Proposition 3.15. Let (2,y,A) be generic. The weight functions wI( z,y,\) with I C [n],
|I| = k form a basis of the space @f (z,y,A) of theta functions obeying the vanishing condition.

Example 3.16. Fork=1andn=1,2...,2€C", yeC, A e€C,a=1,...,n

a—1 n
Wiy (29, N) = 0N —t+zo +y(n—a—1) [0t —=) [] 0t -2 +y)
b=1 b=a+1
a—1 n
Wiy (tz,y, ) = 9(>\+t—za+y(n—a))b1—[9(t—2b+y)bﬂ 0t — z).
=1 =a-+1

3.6 R-matrices

Note that while C:)f(z, Y, A) is independent of the ordering of z1, ..., z, the map @,f does depend
on it and different orderings are related by R-matrices, as we now describe. We define R-matrices
R*(z,y,)) € Endy (C? ® C?) by

Ri(zl —22,Y, >‘) = (Bi(zlaz%ya A)il(i)i(z%zlayv)‘)Pa

where Pu ® v = v ® u is the flip of factors. Up to duality and gauge transformation, these
R-matrices coincide with the elliptic R-matrix of Section 2.3:

Proposition 3.17.
(i) Let s; € Sy, be the transposition (i,i+ 1). Then

) ) n NG
(I)i(sizv Y, >‘) = (I)i(za Y, )‘)Ri <Zi — 2+ Y, A= Yy Z h(j)) P(’L”L+1)'
j=i+2

(1) The R-matrices R obey the dynamical Yang-Bazter equation (2.1) and the inversion
relation (2.2).

(iii) With respect to the basis v1 ® v1, v1 ® V2, V9 ® V1, V3 ® v2 of C? ® C?,

1 0 0 0
0 Oé( ZY, )‘) ﬁ(_'z?y? )‘) 0 Y

=R Yy A
0 5( 2 Y, — ) Oé(—Z,y,A) (z Y )
0 0 0

R™(z,y,\) =

— O

is the dual R-matriz, see Section 2.2, with the standard identification of C? with ((CQ)* and

1 0 0
0 alzy,—A) B(zy,A)
0 B(zy,—A) alz,y,A)
0 0 0

R+(Zay7)‘) = :Rw(z,y,/\)

— o O O

is the gauge transformed R-matriz with

) = <0()\)9%)\ —y) (13) |
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Corollary 3.18. Let (z,y,A) € C" x C x C be generic and set
n N i)
Si(z,y,A) = R(Zi —ZL A=y Y hm) PO € Endy ((C)™"),
j=i+2
i=1,...,n—1, cf. (2.3).

(i) ForteCk, letw (t;z,y,\) = Y. wj(t;2,9,A\)vr. Then
IC[n],|I|=k

w™ (t 2,4, A) = Si(z, 4, Nw™ (¢ 8i2,, A).
(ii) Let Yyon(N) = [T v(A—y > h(j))(i), cf. Section 2.2. Then
i=1 j>i

(I)+(5iza Y, A)QZ)V@" ()‘)_1 = (i)+(2’, Y, )‘)¢V®” ()‘)_ISi(Za Y, )‘)
3.7 A geometric representation

Let 21,..., 2n, 9, A be generic and w € C. Recall that we identify ©F (w, y, \) with V = C? via

the basis wf, w{f . Consider the shuffle products?

pr: V® C:)+(21, cey Zny Yy A) = é*(w,zl, ce 2y YUy )y
p_: (:)"'(,2717 e Zny Yy A — yh(2)) RV — 01 (w,21,...,2n, 4, A).
Then varying w and denoting P the flip of tensor factors, we get a homomorphism
O(w,y,\) =p;' op_ o P € Hom (V0" (2,y,A — yhM),V @ 6% (2,9, 1)).
By construction it obeys the dynamical Yang—Baxter equation
R* (w1 — w9, Y, A — yh(g))(m)f(wl, v, )\)(lg)f(wQ, Y, A — yh(l))(%)
= (w1, y, )\)(23)€<w2,y,>\ . yh(z))(13)R+ (w1 —wa, Y, A — yh(g))(m) (3.1)

in Hom (V Vot (z,y, A— y(h(l) + h(2))),V RV ®6T(z,y, )\)) By varying A\ we obtain
a representation of the elliptic dynamical quantum group as follows. Let (z,y) € C" x C be
generic and consider the space @g(z,y)reg of holomorphic functions f(t,\) on C*¥ x C such
that for each fixed ), t — f(t,\) belongs to ©T(z,y,)). It is a module over the ring O(C) of
holomorphic functions of \. We set

é; (27 y) = @g('Z, y)reg ®(’)((C) K.

It is a finite dimensional vector space over K, and for generic z, y it has a basis given by weight
functions w}, |I| = k.

Proposition 3.19. Let 21, ..., 2,,y be generic complex numbers. Then
O (21,...,2n,y) = EDZ:O(:);(ZI, e Zny YY)

is a representation of the elliptic quantum group E;,(gly) with the L-operator
Lw)(w @ u) = (A — yh®) Vew,y, (e NPV weru),  veV,

Here v is the gauge transformation of Proposition 3.17.

3The compressed notation we are using might be confusing: the map p is actually defined on @101 (w,y, A+
(n — 2k)y) ® ©F (2,9, A). The identification of the first factor with V' depends on k through the A-dependence of
the basis vectors w;'.
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Proof. The homomorphisms ¢ obey the RLL-type relations (3.1) with R-matrix R* which,
according to Proposition 3.17, is obtained from R by the gauge transformation . It is easy to
check that

By, A) = (A — yh®) Ve, y, A (b)Y

obeys the same relations but with R™ replaced by R. It follows that the corresponding difference
operators define a representation of the elliptic dynamical quantum group. |

Remark 3.20. It follows from the previous section that this representation is isomorphic to the
tensor product V(zy(1)) ® - ® V(24(n)) for any permutation o € S,,. However this identification
with a tensor product of evaluation vector representations depends on a choice of ordering of the
21, ..., 2n, While ©F(21,..., 2,,7,\) depends as a representation only on the set {z1,...,2,}.

3.8 Pairing

We define a pairing of ©, with @Zr, taken essentially from [20, Appendix C]. Note that the
product of a function in ©, (z,y,A) and a function in @Z(z,y,)\) divided by the products of
Jacobi theta functions in part (2) of Definitions 3.1 and 3.2, is a function which is doubly periodic
in each variable t; with poles at t; = z, and at t; = 2, —y, a = 1,...,n. It can thus be viewed
as a meromorphic function on the Cartesian power E* of the elliptic curve E = C/(Z + 7).

Definition 3.21. Let 21...,2,,y € E such that z, # zp+jy forall 1 <a,b<n,1<j<n-1,
and let v € H1(E ~{z1,...,2,}) be the sum of small circles around z,, a = 1, ..., n, oriented in
counterclockwise direction. Let D C E* be the effective divisor D = Ul_; Ut ({t € E*: t; =
za} U {t €EF: t; = za—y}). The symmetric group Sy acts by permutations on the sections of the
sheaf O(D) of functions on E* with divisor of poles bounded by D. Let ( ): I'(E¥, O(D))Sk —-C
be the linear form

k
Fo )= g [, ot 11

1<i#j<k

Mdtl coodty,
0(ti —t;+y)

For k = 0 we define ( ): C — C to be the identity map.

Lemma 3.22. Let f € F(Ek,(’)(D))Sk. Then

(=0t Y ==( fe o G =7 —;im)

1< << <n

Proof. By the residue theorem, (f) is a sum of iterated residues at t; = z,(;) labeled by maps
a: [k] — [n]. Since 0(t; — t;) vanishes for ¢; = t;, only injective maps a contribute non-trivially.
Moreover, since the integrand is symmetric under permutations of the variables t;, maps a
differing by a permutation of {1,...,k} give the same contribution. Thus we can restrict the
sum to strictly increasing maps a and cancel the factorial k! appearing in the definition. |

kK n
Definition 3.23. Denote Q = [] [] 0(ti — 24)0(t; — 24 + y) and let
i=1a=1
() O5(%y,N)©6](zy,A) = C

be the bilinear pairing (f,g) = (fg/Q), defined for generic z € C", y € C. Note that fg/Q is
an elliptic function of ¢; for all 7.
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Here is the explicit formula for the pairing:

o) Flt, - to)g(ty, - t) 11, Ot —1) 44 s, (3.2)

<f7 g> = (27.‘.1)143]{;1 ok H@(tl — Za)e(ti — Zq + y) (ti — tj + y)

i#j

Lemma 3.24. Let n = 1. Then {(wy ,wd ) =1,
(wiswl) = 0(A =)o),

and (wy ,w;) =0 for k > 1.

Proof. The first claim holds by definition. We have

OAN—t+z—y)(A+t—2)

0t —2)0(t — 2 +y) dt = 0(X — y)b(N).

<w1_7 wi_> = Q(y) TeSt=z

For k > 2, the residue at t; = z is regular at t; = z for ¢ > 2 and thus the iterated residue
vanishes. |

Proposition 3.25.

(i) The pairing restricts to a non-degenerate pairing O (2,4, \) @ O (z,y,A) — C for generic
21y Zny Yy A

(i7) In the notation of Proposition 3.10, suppose f; € (:),;,_ (2, y, \My(n”"—2k))), gi € (:);,_,(z”, Y, A),
i=1,2 and k| + kb = k{ + k5. Then

(1% fosg1 o g2) = {“l’g”(f”?)’ H = A and 1 =
0, otherwise.
Proof. It is sufficient to prove (ii), since with Lemma 3.24 it implies that, with a proper
normalization, weight functions form dual bases with respect to the pairing.
We use Lemma 3.22 to compute (f1* f2, g1 %g2). Let us focus on the summand in Lemma 3.22
labeled by i < -+ < 4, and suppose is < n’ < igy1. Due to the factor 6(t; — z,) in ¢, see
Proposition 3.6, the only terms in the sum over shuffles having nonzero first s residues rest =z,

.., resy,—, are those for which #1,...,ts are arguments of fi. In particular the summand
vanishes unless s < k. Similarly the factors 6(t; — z;) in ™ restrict the sum over shuffles to
those terms for which tsyq,...,t; are arguments of go, so that the summand vanishes unless
s >k — kY = k). It follows that if k] < kb then (f1 x fo, g1 * g2) vanishes and that if k] = kY,
the pairing can be computed explicitly as sum over i; < -+ < iy < n' < igy; < -+ < i}, with
s = ki, of terms involving f1g1(zi,,- . .7Zik,1)f292(2'z‘k,1+17 ..., 2i,). The coefficients combine to

give <f17 gl><f27 92>

There remains to prove that the pairing vanishes also if k] > k5. Here is where the vanishing
condition comes in. We first consider the case where k] — k) = 1 and then reduce the general
case to this case.

As above the presence of the vanishing factors in T imply that the non vanishing residues
in Lemma 3.22 are those labeled by iy < -+ < i such that at least k{ indices are > n’ and
the corresponding variables ¢; are arguments of g; and at least k) indices are < n’ and the
corresponding variables are arguments of fo. If k] — k% = 1 there is one variable left and we can

write the pairing as a sum of one-dimensional integrals over this variable:

[ fi(za,t)g1(2B) f2(24) g2(t, 2B)
Iap = /7 h(z1, ..., 2n,Yy,t) dt. (3:3)
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Here z4 = z4,, .- S Zay with a; < n' and zp = z,,.. e with b; > n’. The point is that in
h(z,t) several factor cancel and one obtains

h(z,y,t):C(z,y) H e(t_zc) H Q(t_zc“‘y)a

c€AUB ce AUB

for some t-independent function C(z,y). Because of the vanishing condition, the integrand
in (3.3) is actually regular at ¢ = 2. — y and the only poles are at t = 2., c € AU B. By the
residue theorem I4 p = 0.

Finally, let us reduce the general case to the case where k} — k}, = 1. We use induction on n.
By Lemma 3.24 the pairing vanishes unless £ = 1,0 so there is nothing to prove in this case.
Assume that the claim is proved for n — 1. By Proposition 3.10, we can write g1 = hy * my
and go = ho * mo with m; € (:);i(zn,y, A). By Lemma 3.24 we can assume that r; € {0,1}. By
the associativity of the shuffle product we can use the result for ¥} — k% = 1 to obtain that the
pairing vanishes unless r; = ro and

(fr=g1, f2% g2) = (f1 % ha, f2 % ha)(ma, ma).
By the induction hypothesis, this vanishes unless k] = kj. [

We obtain orthogonality relations for weight functions. To formulate them we introduce some
notation. For I C [n] and 1 < j < n we set

n(j, 1) =l el el,l>j},

Thus —w(j, I) the sum of the weights of the tensor factors to the right of the j-th factor in v;.
Corollary 3.26 (cf. [20, Theorem C.4]).

<w;a wj> = 5I,J17Z}I(y7 >\)7

where pr(y, A) = _1;1190\ — (w(G, 1) + Dy)f(A —w(3, Dy).

3.9 Normalized weight functions

By construction the weight functions w;—L are entire functions of all variables and obey the
vanishing conditions

wli(za,za—y,tg,...,tk;z,y,/\):0, a=1,...,n.

This motivates the following definition.

Definition 3.27. The normalized weight functions w[i are the functions
- wy (82,9, M)
w; (tz,y,A) = L )
N | T
1<j#I<k
+
+ w[ (ta Y, )‘)
w; (t;z,y,A) = .
1 ) vy, A) 11 0t —ti+y)
1<j#I<k

Remark 3.28. The factor 1/, defined in Corollary 3.26, simplifies the orthogonality relations

and the action of the permutations of the z; at the cost of introducing poles at A + yZ modulo
7+ 1.
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Let I = {i1,...,ix} C [n] and f(t1,...,t;) a symmetric function of k variables. We write
f(zr) for f(ziy,...,z,)-
Lemma 3.29. For each I,J C [n| such that |I| = |J|, the weight functions w; (z;2,y,\) and
Yr(y, Nwf (275 2,4, ) are entire functions of z, y, A.
Proof. The vanishing condition implies that wfc(za, 2p, t3, ... ) is divisible by 0(zp — z, + y) so
that the quotient by 6(te — t; + y) is regular at z, = z, — y after substitution t; = z,, to = 2.
Since w?: is a symmetric function, the same holds for any other pair ¢;, ¢;. |

The orthogonality relations become:
Proposition 3.30 (cf. [14, 15, 16]). Let I,J C [n], |I| = |J| = k. The normalized weight

functions obey the orthogonality relations

Z w[ ZK,Z yaA)wj(zKaZayvA) _

=97 7.
1 I10Gza—2)0Gza—2+y) 7
acK be K

The summation is over subsets K C [n] of cardinality |K| = k.
Proof. This is a rewriting of Corollary 3.26 by using Lemma 3.22. |

We will also use the orthogonality relations in the following equivalent form.

Corollary 3.31. Let I, K C [n], |I| = |K| = k. We have

[T 0(za—20)0(2a — 26 +y), I=K,
Zw;(zfuz)y’ )\)wj(ZKaZ)y7 )‘) = aEI,bEi

J 0, otherwise.
Proof. Let
TIK = wp (256,24, ) YKJ = w}'(zK,z,y, A)
[T 0(za—2) [T 0(za—2+y)
a€K,beK aeK,beK

Proposition 3.30 claims that the matrix (z7x )7 K is the left inverse of the matrix (yx.)k,s. This
implies, however, that the matrix (x7x)s Kk is also a right inverse of (yx s)k,s, which is equivalent
to the statement of the corollary. |

Weight functions have a triangularity property. Introduce a partial ordering on the subsets
of [n] of fixed cardinality k: if I = {i; < --- <ix}and J = {j1 <--- < jg}, then I < J if and
only if 41 <1, ..., ix < k.

Lemma 3.32. Let e: [n]> — {0,1} be such that
1, 4 b
E(a, b) — Y Zfa’ > Y
0, ifa<bd.
Then
(1) wy (275 2,y, ) vanishes unless J < I and
“(zr 2,y A H9 w(a, )+ 1)y H 0(za — 2p + €(b,a)y).
acl a€l,bel
(ii) wi (27,2, y,A) vanishes unless I < J and

[I 6(za — 2 +€(a,b)y)
acl, bel

wi (z1;2,y,\) = IT0N = (w(a,I)+1)y)

ael
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3.10 Eigenvectors of the Gelfand—Zetlin algebra

The normalized weight functions w; evaluated at z; provide the (triangular) transition matrix

between the standard basis of ((CQ)@n and a basis of eigenvectors of the Gelfand—Zetlin algebra.
The Gelfand—Zetlin algebra is generated by the determinant A(w), see (6.2), and Laa(w). The
determinant acts by multiplication by

ﬁ 0 — Z + y)
O(w — z)
=1
We thus need to diagonalize Laa(w).
Lemma 3.33. Let 0 < k <n, [k] ={1,...,k}. Then
k
i =[O+ (n—k = D)y)op € V(z1) @+ @ V(zn)
i=1
is an eigenvector of Los(w) with eigenvalue

HQ g

Za — y)
Proof. (See [8, 15, 16].) Since Loj(w)vy = 0 = Lia(w)vs, the action of Lag(w) on v&* @ vFn=*
is simply the product of the action on all factors, with the appropriate shift of A. Since L22( )

acts diagonally in the basis v, vo one gets the result by straightforward calculation. |

For I C [n], |I| = k, define

w;(Z], Z,Y, )‘)
=6z =) T 0a—2 19" (3.5)
1=k a€l,bel

By Lemma 3.32 this definition is consistent with the one for {; above.

Proposition 3.34 (cf. [8, 15, 16]). The vectors {1, I C [n], |I| = k form a basis of eigenvectors
of the operators of the Gelfand—Zetlin algebra on V(z1) @ -+ @ V(zp):

:H —za+y ——&I, Loo(w §I—H—%)§1-

- Za ael 9 — Za Z/)
Proof. By Corollary 3.18(i), we have that

g[(’z?y))\) - (Z Y, )gsz (SiZ,y,A)-

Thus &7(z,y,A) is related to &s,.7(siz,y,A) by a morphism of representations of the elliptic
dynamical quantum group. If |I| = k then there is a permutation o such that o - I = [K]
and thus &(z,y,A\) = p(0) & (o - 2,9,A) for some morphism p(c). Since &(z,y,A) is an
eigenvector of Loz(w) with eigenvalue pi)(w; 2,y), see Lemma 3.33, we deduce that ;(z,y, )
is an eigenvector with eigenvalue iy (w; z,y) = pp(w;o - 2,9). |
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3.11 An explicit formula for weight functions

Let I = {i1 < i2 < --- < ix} C [n] and recall the definition (3.4) of w(i,I) and of ¥ in
Corollary 3.26. We set

O(tr — za +y), if a < iy,
IF(rast, 2,5, 0) = S O\ + t, — 24 — w(iy, Dy), if a =iy,
e(tr - Za); ifa > ir,
and
0(tr — za), if a < i,
l;(r,a;t,z,y, >‘) = 0()‘ —tr+ 24 — (w(iral) + 1)3/)7 if a = 7:7“7
O(tr — za +y), if a > i,.
Then
k n
1 H H l}»(rvaﬂthaya)\)
+(¢: A= — r=1a=1
wrE e N =G a0 T 0 )0 — vy |
1<i<j<k
and

1<i<j<k

3.12 Dual bases and resonances

Here we prove Propositions 3.8 and 3.10. They are corollaries of the following more precise
statement:

Proposition 3.35. Let A = Z+77Z and fix (z,y,\) € C" x CxC. Assume that zq — 2, — sy &€ A,
foralla#0b,s=0,....k;, A\—=sy & A foralls € S CZ for some finite S depending on k and n.

n
(i) Let w,;ta = w,i (t; Za, Nty Y, (1— 2kb)>, see Example 3.4. Then the family
b=a+1

+
wkl

n
woxwis . keZEy Y ka=k
a=1

is a basis of @f(z,y, A).
(i7) The subfamily indexed by (ko)l—, such that ke € {0,1} for all a is a basis of (:)ki(z, Y, A).
Part (i) and a special case of (ii) are proved in [4]. The proof relies on the following con-
struction of linear forms whose evaluations on the members of the family form a non-degenerate

triangular matrix. For a symmetric function f(t1,...,%;) and w € C, define ev, f to be the
symmetric function of £ — 1 variables

evwf(tl, e 7tk—1) = f(tl, e ,tk_l,w).
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It is easy to check that ev,, maps @f(z, Y, A) to @,f_l(z, y,Aty). For ¢ € Z>¢ and f a symmetric
function of k variables set

f if ¢ =0,
eV o(f) = § evy_gy o oevy_yoevy(f) if1<l<k,
0, otherwise.

n
Finally, for £ € Z%,, > 4y = k we introduce linear forms €y, 4, € OF (2,9, \)*:

a=1
6(1,-.-7571 = evznazn ©---0 evzla‘gl'

The following result is a special case of Proposition 30 from [4] (adapted to the conventions of
this paper). It can be checked by induction using the fact that the evaluation points are such
that at most one shuffle in the definition of the shuffle products contributes nontrivially.

Lemma 3.36. Let (z,y,\) € C" x Cx C, k,£ € Z%, with }_ Ly = ) ka. Then

a=1 a=1

(i) Let fq, € @;a(za,y,)\—y > (2ky — 1)), a=1,...,n. Then
b=a+1

6@1,...,&1(.](.1 *oeee ok f?’b) - 07

unless b1+ -+ 4Ly < ki +---+k, forallp=1,...,n, and

€hypdon (f1 %% f)

n kp—1 kq—1
- H evza,ka(fa) H (H H(Zb — Za — Z/S) H H(Za — Zp + y(l - 3))) .
a=1 s=0

a<b \ s=0

(1) Let w, be the basis of ©, (z,y,)), z € C, defined in Example 3.4. Then

k
ev, kW, = H O\ — sy).

s=1

Setting fo = wy_, a =1,...,n gives a proof of Proposition 3.35 (i) in the case of ©~. The
case of ©T is reduced to this case by Proposition 3.12.

We turn to the proof of Proposition 3.35(ii). In the notation we have introduced here,
(:),f(z, y, A) is the intersection of the kernels of ev,, o fora =1,...,n.

Let (z,y,A) € C" x C x C and 1 < ¢ < n. In the following proposition we describe the inter-
action of ev,, and ev,,_, with the shuffle product. By using the identifications of Remark 3.3,
we view these maps as maps between the following spaces:

ev,,: @;{t(z,y,)\) — 9%_1(21, ey Ze = Yy Zns Yy A),
CVze—y: @;gt(zayv)‘) - @2:71(21,. Rt Y, 7Zn7y7)\i2y)

Proposition 3.37. In the notation of Proposition 3.6, let f € ©,(2',y, A + y(n" — 2E")),
g €0,,(2",y,\). We have

(2) evzc(f*g):evzc(f)*g H 9(28_2b+y)7 1§C§n/?
b=n’'+1
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/

(1) eva—y(f*xg) = fxeva_y(9) lH(zC —za—y),n <c<n.

Similarly, let f € 6,,(,y, A+ y(n" —2k")), g € ©,(2",y,\). We have

3

n
(iii) evoy(fxg) =evey(f)xg Tl O(ze—2+y), 1<c<n,
b=n'+1

(iv) eva(f*g) = f+eva(g) 1 0( — 2a —y), ' < c < n.

a=1

k
Proof. (i) Due to the factor [[ 6(¢; — z) in the definition of ¢~, see Proposition 3.6, the
I=k/+1
only terms in the sum over permutations contributing nontrivially to ev,, (f *g) are such that ¢
is an argument of f. Thus ev, (f *x g) = ev,. (f) % g times a factor that is computed explicitly.

The proof of (ii)—(iv) is similar. [
By iterating, we obtain:

Corollary 3.38. Let f € O, (2, y, A\ +y(n" —2k")), g € ©,,(2",y,\). We have

n
Ver(frg) =evan(f)rg [[ 0(e—m+9)0(e—2), 1<c<n,
b=n'+1

n/

evz2(f xg) = fxevz2(g) H 0(2c — za — ¥)0(zc — 2a), n' <ec<mn,

a=1

and similarly for ©F. In particular, if f and g satisfy the vanishing condition then also f * g
does.

Proof of Proposition 3.35(ii). We give the proof for ©; (z,y, ). The proof for (:);(z,y, A)
is similar or can be deduced using the duality map of Proposition 3.12. It follows from Corol-
lary 3.38 that the indicated subfamily does belong to (:),;(z, Y, A). It remains to show that it is
a spanning set. By Proposition 3.35, (i), we know that any element of ©; (z,y, \) can be written
as linear combinations

E Akl,-‘.,knw’ﬂ E SRICIE 3 wkn.

On the other hand, the linear form €, x, vanishes on @,;(z, y, A) if kg > 2 for some a, since it
involves the evaluation at z,,z, —y. By Lemma 5.17, the coefficients Ay, ., must thus vanish
if at least one k, is > 2 which is what we had to prove. |

4 Equivariant elliptic cohomology of Grassmannians

Let E be an elliptic curve and G a compact group. Equivariant elliptic cohomology was pos-
tulated by Ginzburg, Kapranov and Vasserot in [7] as a functor E¢ from pairs of finite G-CW
complexes to superschemes satisfying a set of axioms, generalizing those satisfied by equivari-
ant cohomology and equivariant K-theory. One of them being that for a point pt, Eg(pt) is
a suitable moduli scheme of G-bundles on the dual elliptic curve. For example Ep(,)(pt) =
E®™ = E"/S, and for an abelian group A with group of characters X (A) = Hom(A4,U(1)),
Ea(pt) = Hom(X (A), E). By functoriality, the scheme Eg(M) comes with a structure map

PG Eg(M) — Eg(pt).
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For a complex elliptic curve, the case we consider here, a construction of equivariant elliptic
cohomology was given by Grojnowski [7, 10]. It has the property that for a connected Lie group G
with maximal torus A and Weyl group W then W acts on E4(M) and Eq(M) = Ex(M)/W.

4.1 Tautological bundles and Chern classes

Let E be a complex elliptic curve. The unitary group U(n) and its maximal torus A = U(1)" act
on the Grassmannian Gr(k,n) of k-dimensional subspaces of C". The A-equivariant cohomo-
logy of Gr(k,n) was described in [7, Section 1.9], and is analogous to the classical description
of ordinary equivariant cohomology in terms of Chern classes of tautological bundles. The
Grassmannian has two tautological equivariant vector bundles of rank k& and n — k, respectively.
They give rise to a characteristic map [7]

X: Ba(Gr(k,n)) = By (pt) X By (pt) = E® x B9,

Here E*) = E*/S) denotes the symmetric power of the elliptic curve, which is the U(k)-
equivariant cohomology of a point. Together with the structure map to E4(pt) we have a de-
scription of the equivariant elliptic cohomology as the fiber product of E®) x E(=k) and E"
over E(™ namely, we have the Cartesian square:

EA(Gr(k,n)) — EW® x pn=k)

l i}
E" — EM).

The left vertical arrow is the structure map to F4(pt); the maps E"™ — EM and EK) x p(n—k) _,
E™) are the canonical projections. Thus E(Gr(k,n)) = (E®) x EC=F)) x ., E™

The symmetric group S, (the Weyl group of U(n)) acts on the diagram above (with trivial
action on the right column) and the U(n)-equivariant cohomology is the quotient by this action:

Ey(ny(Gr(k,n)) = Ea(Gz(k,n))/S, = E® x B,

4.2 Moment graph description

An alternative useful description of the equivariant elliptic cohomology is via the localization
theorem, proved by Goresky, Kottwitz and MacPherson [9] for equivariant cohomology and gen-
eralized to elliptic cohomology by Knutson and Rosu [18]. For partial flag varieties such as
Grassmannians it is described explicitly in [6, Example 4.4]. The action of A on the Grassman-
nian Gr(k,n) has isolated fixed points labeled by subsets of [n] = {1,...,n} with k elements.
The fixed point x; labeled by I C [n] is the k-plane spanned by the coordinate axes indexed
by I. The inclusion of the fixed points z; induces a map tr: Ea(pt) — Ea(Gr(k,n)) and it
turns out that E4(Gr(k,n)) is the union of the t;E4(pt) >~ E™ where I runs over the subsets
of [n] with k elements.

Let T' be the graph with vertex set I'g the set of subsets I C [n] with |I| = k elements and
an edge connecting I with I’ for each pair of vertices such that |[I N I'| = k — 1. In this case
I=JU{a} and I' = J U {b} with |J| =k — 1 and we set A = {z € E", 2, = z}. We then
have inclusion maps A p — ¢ Ea(pt) = E", Ajpp — tpEs(pt) = E™.

Proposition 4.1. We have the coequalizer diagram

Uirnrj=k—1A11 = Urcp)n=kE" = Ea(Gr(k,n))).
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In other words, E4(Gr(k,n)) is the union of copies of E™ labeled by subsets I C [n] of size k,
glued along the diagonals Ay ;. The structure map E4(Gr(k,n)) — E" is the identity on each
copy. The isomorphism between the two descriptions of E4(Gr(k,n)) is induced by the map

ulc[n}’|l|:kE” — (E(k) X E(nik)) X F(n) En,
whose restriction to the copy E™ labeled by I is
Z = (Z’vazl_)v /I = (Zi)lEb R = (Zj)jel_'
It is easy to check directly Proposition 4.1 using the fiber product as a definition of the equiv-
ariant elliptic cohomology.
4.3 Cotangent bundles and dynamical parameter

The action of U(n) on the Grassmannian induces an action on its cotangent bundle Xy, =
T*Gr(k,n). Additionally we have an action of U(1) on the cotangent bundle by scalar multipli-
cation on the fibers, so we get an action of

G=U(n)xUQ)
and its Cartan torus
T=AxUQ1)=U1)".

Since the cotangent bundle is equivariantly homotopy equivalent to its zero section, the equiv-
ariant elliptic cohomology is simply

Er(Xgn) = Ea(Gr(k,n)) x E,
a scheme over Ep(pt) = E" X E, and
Eg(Xk,n) = EU(n)(GI‘(k,n)) X E,

a scheme over Eg(pt) = E™ x E.
We will consider, as in [1], an extended version of elliptic cohomology to accommodate for
dynamical variables in quantum group theory, namely

ET(Xk,n) = ET(Xk:,n) X (PiC(Xk,n) Rz E) = ET(Xk,n) X E7

a scheme over ET(pt) = E™ x E x E (the Picard group of the Grassmannian is infinite cyclic
generated by the top exterior power of the tautological bundle). Similarly, we set

Ec(Xpn) = Ec(Xp,) x E,

which is a scheme over Eg(pt) = E™ x E x E.

The fixed points z i for the A-action on the Grassmannian are also isolated fixed points in the
cotangent bundle of the Grassmannian for the T-action and we have maps vx = Ep(ix): Ep(pt)
— ET(Xkﬁn) induced by the inclusion ix : pt — zg. Then ET(X;M) consists of the components
v Br(pt), where K runs over the subsets of [n] with k elements. By Section 4.1, we have
a description of ET(X kn) as a fiber product:

Er(Xpn) = (B x E®P) x ) E" x E x E.
In particular we have the characteristic embedding
¢: Er(Xpn) = EW x Em=F x E" x Ex E (4.1)

of the extended T-equivariant elliptic cohomology scheme into a non-singular projective variety.
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5 Admissible line bundles on E’T(Xk’n)

5.1 Line bundles on EP

Line bundles on complex tori are classified by the Appel-Humbert theorem, see [13, Section 1.2].
In the special case of powers of generic elliptic curves this reduces to the following explicit
description: let F = C/A with A = Z + 7Z so that EP = CP/AP. For each pair (N,v) con-
sisting of a symmetric integral p x p matrix N and v € (C/Z)P let L(N,v) be the line bundle
(CP x C)/AP — EP with action

A (z,u) = (2 + A ex(z)u), A€ AP xz € CP, u e C,
and cocycle

en+m7(l') _ (_1)71th(_eiwr)thmeQTrimt(Nx+v)’ n,m € i3

Proposition 5.1.

(1) L(N,v) is isomorphic to LIN',v") if and only if N = N' and v =v" mod AP.
(ii) For generic E, every holomorphic line bundle on EP is isomorphic to L(N,v) for some
(N,v).
(Z’LZ) ﬁ(Nl, 1)1) X E(NQ, 1}2) = [:(Nl + No,v1 + 1)2).

(iv) Let o € Sy act by permutations on EP and CP. Denote also by o the corresponding p X p
permutation matriz. Then

0*L(N,v) = L(c"No, o).

To an integral symmetric p X p matrix N and a vector v € CP we associate the integral
quadratic form N(z) = 2! Nz and the linear form v(z) = z'v on the universal covering CP of EP
and we call them the quadratic form and the linear form of the line bundle £(N,v). The linear
form is defined up to addition of an integral linear form.

Remark 5.2. Exceptions to (ii) are elliptic curves with complex multiplication, in which case
there are additional line bundles that are not isomorphic to those of the form L(N,v).

Remark 5.3. The map EP — Pic(EP) sending v to £(0,v) is an isomorphism onto the subgroup
Pic?(EP) of classes of line bundles of degree 0. If E is a generic elliptic curve, the Néron-Severi
group NS(EP) = Pic(EP)/Pic’(EP) is a free abelian group of rank n(n -+ 1)/2 identified with the
group of integral symmetric matrices via N — L(N,0).

Remark 5.4. Sections of £(N,v) are the same as functions f on CP such that f(xz 4+ \) =
ex(z)"Lf(z) for all A € AP, x € CP. Explicitly, a function on CP defines a section of L(N,v) if
and only if

fleg,..,zj+ 1,0 ,2p) = (—1)ijf(:n),
Fla,. o+ 7. wp) = (—1)Nive 2 Nowowtvy) =mirNi ¢ (),

forallz € CP, j=1,...,p.

Remark 5.5. The factors of —1 in the cocycle can be removed by going to an equivalent cocycle.
With the present convention the line bundles £(N,0) correspond to divisors whose irreducible
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components are subgroups. Let 6(z) be the odd Jacobi theta function in one variable, see (1.1).
Then, for any r € ZP and z € C,

O(r'z + 2) = O(r1z1 + -+ + 1pap + 2)
is a holomorphic section of £(N,v) with quadratic form
» 2
N(z) = <Z TZ‘.QZZ‘) ,
i=1

and linear form

p

v(z) =z Z TiT;.

=1

If z = 0 this section vanishes precisely on the subtorus Ker(¢,), the kernel of the group ho-
momorphism ¢,: EP — E, x + . rx;. Since an integral quadratic form is an integral linear
combination of squares of integral linear forms, £(N,0) has a meromorphic section which is
a ratio of products of theta functions 0(r'z) with r € ZP.

5.2 Admissible line bundles

The elliptic dynamical quantum group acts on sections of admissible line bundles, which are,
up to a twist by a fixed line bundle, those coming from the base scheme Ep(pt). Let pr be the
structure map

pr: ET(Xk,n) — ET(Pt)a
and ¥ = x X id x id the characteristic map
X: Er(Xpn) = Ea(Gr(k,n)) x Ex E — E® x E"F x F x E.

Let t1,...,t5, S1,- ., Sn—k: Y, A be coordinates on the universal covering of EF x E" % x E x E
and N the quadratic form

k k n—k
Nl 5,9, 0) =2) ti(A+(n—k)y)+ ) (ti—s;)% (5.1)
i=1 i=1 j=1

Clearly Ny, is symmetric under permutation of the coordinates ¢; and of the coordinates s; and
thus £(Ng.n,0) can be considered as a bundle on E®) x E"=F) x E x E.

Definition 5.6. The twisting line bundle on Xy, ,, is Tr.n = X*L(Nkn,0)
Definition 5.7. An admissible line bundle on EAT(XIM) is a line bundle of the form
prL ® T,

for some line bundle £ on E7(pt).
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5.3 Holomorphic and meromorphic sections

We will consider meromorphic sections of line bundles on elliptic cohomology schemes. Since
these schemes are singular, we need to be careful about the definition. Recall that E‘T(Xk,n)
has components Y = ¢ KET(pt), corresponding to the inclusion of the fixed points z g, labeled
by subsets K C [n] of cardinality k. We say that a meromorphic section on a complex manifold
restricts to a meromorphic section on a submanifold if it is defined at its generic point, i.e., if
the divisor of poles does not contain a component of the submanifold.

Definition 5.8. Let £ be a line bundle on EAT(XIM). A meromorphic section of L is a col-
lection of meromorphic sections sy of Lly,, labeled by I C [n] with |I| = k and restricting to
meromorphic sections on all intersections Y7, N ---N Y7, and such that

s1lyviny; = s7lviny;,

for all I, J. A holomorphic section is a meromorphic section whose restriction to each Y7 is
holomorphic. We denote by I'(E7(X},),L) the space of holomorphic sections of £ and by
T mer(ET(X kn), L) the space of meromorphic sections of L.

5.4 Weight functions and admissible line bundles

With the description of line bundles of Section 5.1, the weight functions w}r (t1y ey thy 21, - - - s 2n,
Y, A) can be viewed as sections of certain line bundles on E®) x E(n=k) « E" x E x E, namely
as (s-independent) functions of the coordinates (¢1,...,tk,S1,---,Sn—k,2,Y, A) on the univer-
sal covering space, with proper multipliers under lattice translations. Their pull-back by the
characteristic embedding

¢: Er(Xpn) = E® x B « B x Ex E,

see (4.1), is a section of the pull-back bundle and its restriction to ¢;E7(pt) is the evaluation
of w}r at t = zy.

Proposition 5.9. Let I C [n], |I| = k. Then the restriction c*wj of wj to Er(Xy,) is
a meromorphic section of the admissible bundle p.L; @ Ty, ., for some line bundle L1 on Er(pt).
Moreover T/J[C*'LU?_ is holomorphic.

Proof. We need first to check that all terms in the sum over Sj defining the symmetrization
map Sym in Section 3.11 have the same transformation properties under shifts of the variables
by the lattice so that they define sections of the same line bundle on E¥ x E® x E?. The
symmetrization map then produces a section symmetric under permutations of ¢;, which is the
same as a section of a line bundle on E*) x E™ x E2. The transformation properties are encoded
in the quadratic form: the argument of Sym is a section of the line bundle £(M;j,0) with

k k n
M[(t, ZY, )‘) = 2Ztr<)‘ + (n - k)y) +Z Z(tr - Za)2 —2 Z (tr - ts)z + MI(Z7y7 )‘)7
r=1

r=1a=1 1<r<s<k

where M; is independent of ty,...,t;. Since M is symmetric under permutations of the vari-
ables t; it defines an S,-equivariant line bundle. All terms in the sum over permutations are
sections of this line bundle and their sum is a symmetric section, i.e., the pull-back of a section on
the quotient E®) x E™ x E2, which we understand as a section on E*) x E(=k) x " x E2_ con-
stant along E(™~*). The restriction to the component ¢ Ep(pt) of Ep(Xy,) is wi (zx, 2,9, \),
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the result of substituting the variables ¢; by zx = (z;)icx. It is a section of the line bundle with
quadratic form

Mi(zic, 2,9, 0) = 2w+ (n=k)y) + D> (2 —2)" = Y (20— 2)* + Mi(z,9,)

1€EK €K a=1 1,jEK
=23 A+ (=R + > (2 —2)+ Mi(z,y,0)
ieK i€eK,jeK

= Nk,n(sz LY )‘) + MI(Zvya /\)a

cf. (5.1). Thus the symmetrization is a section of the tensor product of the twisting bundle and
the bundle with quadratic form M which is independent of K and thus comes from Ep(pt) =
E™ x E?. The section ch*wf is holomorphic because of Lemma 3.29. |

Thus c*wl+ is a meromorphic section of an admissible line bundle p7.L; ® Ty, with poles

on a finite set of hypertori with equation A — jy = 0, j € Z, the divisors of zeros of ;. The
bundle £; can be calculated: £; = £(Ny,0) with

Nr = —QZH(CL, I)Zay - 22211()‘ + n(av I_)y)

acl a€l

+ (k(n— k) = n(a,D)y> = > (A= (n(a,I) + D)y + n(a, Dy)?, (5.2)

acl a€cl

see (3.4) for the definition of n(a,l). Let D; be the divisor of zeros of the section ¢r(y, \)
on Er(pt), I C [n], see Corollary 3.26. Then the normalized weight function can be understood
as a holomorphic section of an admissible bundle:

cwi € T'(Xpn, prL1(Dr) @ Tion)-

Here the notation £(D) means as usual the invertible sheaf of meromorphic sections of a sheaf L
whose poles are bounded by the divisor D.

Example 5.10. Let n = 1. Then fwg(t,z,y,/\) =1 and c*wgy = 1 is a section of the trivial
bundle (L5 and 7y, are both trivial). For k =1,

oA+t —2)

+ —

and c*wzrl} is obtained by substituting ¢ = z:

1

*on T —
c w{l}(z,y,)\) =09

This is a meromorphic section of the line bundle £(—(A — y)?,0) with a simple pole at A = y

on ET(XLI) = ET(pt) =~ [3. The quadratic form is composed from the quadratic forms 2z
of 711 and —22X — (A — y)? of L1y

5.5 Elliptic cohomology classes and stable envelope

Here we introduce an elliptic version of the Maulik—Okounkov stable envelope. It is constructed
in terms of weight functions. In Appendix A we give an axiomatic definition in the spirit of [12].
It would be interesting to understand the relation of our definition with the one sketched in [1].
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Definition 5.11. Let £ € Pic(ET(pt)). A T-equivariant elliptic cohomology class on Xy, , of
degree L is a holomorphic section of the admissible bundle p.L & Ty, on ET(X kn). We denote
by H%“(X kn)c the vector space of T-equivariant elliptic cohomology classes of degree £ on X, .
We denote by H%H(Xn)c the h-module EBZ:OH:‘,%}I(X;C,”)E, with k-th direct summand of h-weight
—n + 2k.

Definition 5.12. The stable envelope is the map

Stab: ((C2)®n — Op—o DIcn], |I|=k H%H(Xk,n)g,(DI), (5.3)

sending vy to the cohomology class c*w?.

Remark 5.13. The basis vector v; should be viewed as the generator of the space of elliptic
cohomology classes of the fixed point x;, see Section 7 below.

Remark 5.14. The class c*w;r has analogs in equivariant cohomology and equivariant K-theory
of Xy, ,, see [8, 14, 15]. The analog of c*wl+ in equivariant cohomology is the equivariant Chern—
Schwartz—MacPherson class of the open Schubert variety Qr, see [17]. Hence c*w} may be

considered as an elliptic equivariant version of the Chern—Schwartz—MacPherson class.

5.6 Sheaf of elliptic cohomology classes and theta functions

Here we realize elliptic cohomology classes as sections of coherent sheaves on ET(pt) and relate
their sections to the theta functions with vanishing condition of Section 3.3.

Definition 5.15. Let k¥ = 0,...,n, 4 = —n + 2k and T, be the twisting line bundle of
Definition 5.6. The sheaf of elliptic cohomology classes of weight i is the sheaf

/Hg'l'l (Xk,n) = PTx 77c,n

on ET(pt). Here pr. = (pr)« denotes the direct image by the structure map pr: EAT(Xk,n) —
Er(pt).

By the projection formula, L&pr+ Tk n = prv (P L& Tk ») for any line bundle £ € Pic (ET(pt)).
Thus a section of HH(X},,) ® £ on an open set U is a section of the admissible line bundle

PrL @ Tip on p}l(U). In particular,
H (Xin)e = T (Er(pt), HF (Xpn) @ L).

The space @,‘:(z,y,)\) of theta functions introduced in Section 3.1 is the fiber of a vector
bundle ©; = on Erp(pt). In the language of Section 5.1, O, = pL(NP ,0) is the direct image

k,n>
by the projection p: E®) x Ep(pt) — Ep(pt) onto the second factor of the line bundle associated
with the quadratic form

k

k n
NP, =23 A+ (n—ky) + > (ti— za)” + k(k — 1)y, (5.4)

=1 i=1 a=1

Here, as usual, the t; are coordinates on the universal covering of E* and z,, y, \ are coordinates
on the universal covering of ET(pt). In fact only the terms involving ¢; in N Sn are determined
by the transformation properties of the fibers @;(z,y, A). We choose the remaining terms to
simplify the formulation of Theorem 5.16 below.

The space of theta functions (:);(z, y, A) satisfying the vanishing condition of Section 3.3 is
the generic fiber of a coherent subsheaf @Z;n of G);:,n on Ep(pt) (it is the intersection of kernels
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of morphisms ev., 5 of coherent sheaves). The sheaves O and H$!(X},) are closely related:
there is a morphism

Q: (:) L= H(Xkn),

defined as follows. A section of @gn on an open set U is given by a function f(¢;z,y,\) on
C* x U, which, as a function of ¢ belongs to @Z (z,9,A) and obeys the vanishing conditions

f(za,za—y,tg,...,tk;z,y,)\)20, a=1,...,n.
The morphism ¢ sends f to (¢1f)rcin),|1j=+ Where @ f is the restriction of ¢ f to LIET(pt) =
Er(pt):

erf(z,y,A) = I1 9( —tj+y) t:z17
i#]

(5.5)

cf. Section 3.9.

Theorem 5.16. Let D C ET(pt) be the union of the hypertori zo = zp +y, 1 <a # b <n and
A=jy, —n < j <n. The map ¢: f = (¢1f) 1), n=k given by formula (5.5) is a well-defined
injective morphism of OE (pt) -modules

©: é ‘—> Hell(ka),

which, is an isomorphism on Ep(pt) ~ D.

Proof. We first prove that the morphism is well-defined. The function ¢rf of z, y, A defines

a section of the line bundle £(Q,0) with quadratic form @ = (N]Sn — > (ti—t;j+ y)2) ‘t:Z]' An
1]

explicit calculation shows that

Q = Nk,n’tzzj, s=zj-

It follows that ¢f is a meromorphic section of pr, Tk . By Lemma 3.29 (which applies to any
symmetric theta function obeying the vanishing condition), ¢ f is actually holomorphic.

To show that the morphism is injective, we use the fact that the weight functions wi 7 form
a basis of @k (z,y,A) at the generic point of ET(pt), see Proposition 3.15. Thus every local
section of (:),': ,, can be written as linear combination of normalized weight functions with mero-
morphic coefficients. If this section is in the kernel of our morphism then its restriction to
each component vanishes. By the triangularity property of weight functions of Lemma 3.32 all
coefficients must vanish and the kernel is trivial.

We now construct the inverse map on the complement of D. A section s of ’HBT“(Xk,n) on
an open set U is a collection of sections sy of 7y, on the various components of p;l(U) and

agreeing on intersections. Then f = ¢~ 's is

Wy (Z[,Z,y,)\)S[(Z,y,)\)
f(t; E -1 K F(t A).
< y? wK y7 1—[ e(za_Zb)e(za_Zb‘i‘y)WK( y %y Y, )
a€cl,bel

It is easy to check that this is a meromorphic section of @zn on U with poles at 2z, = z, + v,
1 <a#b<nand at the zeros of V. It is regular at the apparent poles at z, = z; since the
sections sy agree on intersections of the components. Let us compute ¢ f:

f(tZ y> Z wK 2T, 2, yv)‘)sf(zvyaA)

Hﬁ(tl—tj—l—y I[I 0(za—2)0(za — 2+ y)
i#] LK acl,bel

wi(t, 2,9, \).
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The orthogonality relations, see Corollary 3.31, imply

wi (21, 2,9, \)s1(2,9, A) +
wsf = Z [T 0(za — 2)0(2q — 26 + 1) Wi
LK acl, bel

ZJ,Z,y,)\) :SJ(ZvyvA)‘ u

5.7 Symmetric group and G-equivariant cohomology classes

The symmetric group S, on n letters acts on C™ by permutation of coordinates. This action
induces an action of \S;, on the Grassmannians, their cotangent bundles X , and on 7" so that
the action map 7' x X, — X, is Sy-equivariant. The induced action on the cohomology

schemes ET(X;C,”) can be easily described: on ET(pt) = E" x E?, S, acts by permutations of
the first n factors and o € S,, sends the component LKET(pt) of E’T(Xk,n) to LU(K)ET(pt) SO
that the diagram

Er(pt) = Ep(pt)
LK N lo(K)
Er(Xkn)

commutes for any K C [n] with |K| = k elements. The structure map Ep(Xy,) — Ep(pt) is
Sn-equivariant and the quotient by the action of S,, is the G-equivariant elliptic cohomology
scheme.

Lemma 5.17. The twisting bundle is Sy-equivariant, i.e., the Sy-action lifts to an S, action
on the bundle.

Proof. This follows since the twisting bundle is the pull-back by an S,-equivariant map of
a bundle on E®) x E(™=F) on which the action of the symmetric group is trivial. |

In particular for each o € S,, and admissible line bundle M, we have an admissible line
bundle ¢* M and a map

0" Iper (ET(Xk,n); M) — Tmer (ET(Xk,n)a U*M)a
and also a map
o HP(Xpn) = o HE (Xpn)-

Let 7: Ep(pt) — Eq(pt) = Ep(pt)/S,. Then we obtain an action of the symmetric group on
W*H%I(Xk,n).

Definition 5.18. Let G = U(n) x U(1). The sheaf of G-equivariant elliptic cohomology classes
is
Heu(Xk n) _ F*Heu(Xk,n)Sn,

a coherent sheaf on Eg(pt) = EM™ x E x E. Let £ € Pic (EG (pt)). The space of G-equivariant
elliptic cohomology classes of degree £ on X}, is Hg}l(Xk,n)g = F(EG (pt), HeGII(ka) ® [,). We
set HE'(X,,) . to be the h-module®?_ HE (X}, )z, with the summandlabeled by k of h-weight
—n + 2k.
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5.8 Admissible difference operators

Recall that EAT(Xkyn) has a factor E x E corresponding to the U(1)-action on the cotangent

spaces and the dynamical parameter. For j € Z, let 7; = 7{ be the automorphism of E x E such
that

(Y, A) = (y, A + jy)-

Denote also by 7; the automorphism id x 7; of Ep(Xy,) = Ea(CGr(k,n)) x E x E. If £ is a line
bundle on ET(Xk,n) then 7; lifts to a (tautological) bundle map £ — 77L, also denoted by 7.
It maps meromorphic sections to meromorphic sections and is thus a well-defined operator

T; : Fmer(ET(Xk,n)a £) — Pmer(ET(Xk,n)7 T;‘C)-

Definition 5.19. Let £k = 0,...,n and £ be a line bundle on ET(pt), € 27, v € Z. An admissi-
ble difference operator on meromorphic sections of an admissible line bundle M = p}.L1®T;, , on
Er(Xk,pn) of degree (L, p,v) is a linear map ¢: I'ier (ET(Xk’n), Ml) — Imer (ET(Xk+u7n), J\/lg))
such that

(i) My is the admissible bundle p%.Lo ® Titpj2n With Lo = L@ 1) Ly.
(ii) For each section s of M and fixed point i € Xj1, pn,
Viep(s) =Y oK kTS (5.6)
K/
for some sections ¢k g € I'mer (ET(pt), LMo ® L}(,T;Ml_l).
By inserting the definition, we see that the line bundle of which ¢ g+ is a section is
GeMo @ i M = L@ Ui Thp/2,n @ T;‘L}(ﬂ;nl.

This line bundle is independent of the admissible line bundle the operator acts on. It thus makes
sense to let the same admissible difference operator act on sections of different admissible line
bundles. We set

Ak’,n(‘caluﬂy)? k=0,....n, 0§k+,u§na

to be the space of admissible difference operators of degree (L, u, V).

It is convenient to extend the above definitions to the case of varying k. We denote by
Xpn = UP_y Xk, the disjoint union of cotangent bundles to Grassmannians of subspaces of all
dimensions in C™. The extended elliptic cohomology scheme is then

Er(Xn) = Up—o Br(Xpn)-
It comes with a map pr: Er(X,) — Up_,Er(pt).

Definition 5.20. An admissible line bundle on ET(Xn) is a line bundle whose restriction to
each Ep(Xy,) is admissible. Let £ = (£ ..., L") be a line bundle on U}_,Er(pt), p,v € Z.
An admissible difference operator of degree (L,u,v) acting on sections of an admissible line
bundle M is a linear map Iyer(E7(Xy), M1) = Dner(Er(X,), Ma) restricting for each k =
0,...,n such that k4 p € {0,...,n} to an admissible difference operator

I'mer (ET(Xk,n)7M1\Xk,n) — DI'mer (ET(XHM,n),MﬂXkW,n)a
of degree (L¥, i, v). We denote by

.An(ﬁ, My V) = @0§k,k+p§nAk:,n (‘Cka K, V)

the space of admissible difference operators of degree (L, u, V).
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Remark 5.21. We will not need to consider operators on components for k such that k + p ¢
{0,...,n}. However to have a correct definition we may set ET(ijn) to be the empty set if
k ¢ {0,...,n} and declare the space of sections of any line bundle on the empty set to be the
zero vector space.

5.9 Left and right moment maps

Examples of admissible difference operators are multiplication operators by sections of pull-backs
of line bundles on Ep(pt). A subclass of these operators appear as coefficients in the defining
relations of the quantum group: they are the entries of the R-matrix and are functions of the
dynamical and deformation parameter, and appear in the relations in two different guises: with
and without “dynamical shift”. We borrow the terminology of [2, Section 3|, where these two
appearances are called the left and right moment maps.

Let £ be a line bundle on E7(pt). We define two line bundles p,L, p,.£ on L}_,Er(pt):

e 1L is the line bundle (L, ..., L);

o 1L is the line bundle (7L, 7% oL, ..., 7%, L).
Definition 5.22. The left moment map is the map

g Fmer(ET(pt)a E) - An (MEE, 07 0),

sending a section s to the operator whose restriction to Ay, is the multiplication by 7,°_,, pTs.

The right moment map is the map pu,: Fmer(ET(pt),E) — An(urL,0,0) sending s to the
operator whose component in Ay ,, is the multiplication by p7.s.

5.10 Sections of admissible bundles as a module over multiplication operators

Let £€Pic(Er(pt)) and set A% (L) = (A, (L,0,0)). Then the family A% = (A%(L)) CePie(Br(pt)
is a commutative subalgebra graded by the Picard group of the base. It acts on meromorphic
sections of admissible bundles by mapping I'mer(Xg n, M) to I'mer(Xp n, M ® pL) for any ad-
missible line bundle M. Then the weight functions form a system of free generators of the
module of sections of admissible line bundles over A% in the following sense.

Theorem 5.23. Let L € Pic(ET(pt)). Every section w € Tper (ET(Xk,n),pi}/J ® 77.3,”) can be
uniquely written as

w = Z agr Stab(l}[),

ICn], |I|=k
for some ay € A° (C ® El_l), where Ly is the line bundle of Proposition 5.9.

Proof. Denote by Y; = IET(pt) the component labeled by I. Suppose that w is a meromorphic
section vanishing on Y for all J > I and such that w|y, # 0. By Lemma 3.32, we can subtract
from w a multiple of c*w;r to get a section that vanishes on Yy, J > I. By induction we may
subtract from w a suitable linear combination of weight functions to get 0. |

5.11 S,-equivariant admissible difference operators

Definition 5.24. An admissible difference operator is called S, -equivariant if it commutes with
the action of the symmetric group on sections.

Lemma 5.25. Let L be an S,-equivariant line bundle on ET(pt). An admissible difference
operator ¢ of degree (L, 1, v) is Sy-equivariant if and only if its matriz elements pg i+ obey

0" Po(K),0(K') = PKK'
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5.12 Graded algebras, graded modules

Let @ be a group. Recall that an Q-graded algebra A over C is a collection (A-),cq of complex
vector spaces with associative linear multiplication maps A, ® A,/ — A/, a®b + a-b. Let P be
a set with a left action of Q. A P-graded (left) module over A is a collection (M),),ecp of complex
vector spaces indexed by P together with linear action maps A, ® M, — Ay, a @ m+— a-m,
obeying (a-b)-m = a-(b-m). A unital Q-graded algebra is an Q)-graded algebra with an identity
element 1 € A, in the component indexed by the identity element e of ). We require 1 to act
as the identity on P-graded modules.

5.13 The grading of admissible difference operators

Let Q = Pic (ET(pt)) X 27 x Z be the product of the Picard group of Ep(pt) = E"2 by 27 x Z
with group law

(L, )L ) V) = (Lo L p+ v +0).

Proposition 5.26. The collection (An(L, 1, v))(z,ueq with the composition of operators is
a unital QQ-graded algebra.

Proof. An admissible difference operator of degree (L', 1/,1') sends a section of an admissible
line bundle My = p}L1 ® Tk, to a section of Mg = p7.Lo @ Tiy /o, With Lo = L' @715Li. An
operator of degree (L, 1, ) sends this section to a section of pj.L3 ® Ty o4 2,0 With

L3s=LRT Lo=LRT L ® Ty L1

It is clear that the u-components of the degree add, so the composition has degree (L&7,; L, u+1/,
v+ '), as required. The identity element is the multiplication by constant function 1, a section
of the trivial bundle O. |

Remark 5.27. There is a slight abuse of notation, since A(L, i, v) is defined for a line bundle £
and not for its equivalence class. The point is that A(L, u,v) for equivalent bundles £ are
canonically isomorphic: if ¢ is an admissible difference operator of degree (£, u, v) and ¢: L — L'
is an isomorphism then ¢’ = 1 o ¢ 01y~ ! is an difference operator of degree (L', u,v). This
establishes the isomorphism

Vi AL, p,v) — AL p,v),

which we claim is independent of 1. Indeed any two choices of ¥ differ by the composition with
an automorphism of £. Since Aut(L£) = C*, ¢ and ¢’ differ by multiplication by a nonzero
scalar which does not affect .

Let P be the set of pairs (£, 1) with £ € Pic(Er(X,,)) and p € Z. Then Q acts on P via
(L, pyv) - (L 1) = (L@ L p+ ).

Let M = p7L1 ® Tk, be an admissible bundle on Xy, ,,.
Admissible difference operators map sections of admissible line bundles to sections of admis-
sible line bundles. This is formalized as follows.

Proposition 5.28. The collection of vector spaces I per (ET(Xk,n),p*TE®Tk7n), labeled by (L, 1),
with p = —n + 2k is a P-graded module over the Q-graded unital algebra A, of admissible
difference operators.

Proof. This is an immediate consequence of the definition, see Definition 5.19(3). [



Elliptic Dynamical Quantum Groups and Equivariant Elliptic Cohomology 31

6 Action of the elliptic dynamical quantum group

In this section we construct an action of the elliptic dynamical quantum group associated with g,
on the extended equivariant elliptic cohomology ET(Xn) of the union of cotangent bundles of
the Grassmannians of planes in C™. The action is by Sy-equivariant admissible difference oper-
ators acting on admissible line bundles on the cohomology scheme. Thus each generator L;;(w)
(1,7 € {1,2}) of the elliptic dynamical quantum group acts on sections of any admissible line
bundle by an admissible difference operator of some degree (L;;(w), pij,v;j) which we give be-
low. We also compute the action on T-equivariant elliptic cohomology classes and use the
Sp-equivariance to show that the action descends to an action on G-equivariant classes, with
G=U(n)xU(1).

We construct the action in such a way that at the generic fibre of ET(Xk,n) — Ep(pt) =
E" x E (i.e., for fixed zi,...,2p,y) the map (5.3) defines a morphism of representations from
the tensor product of evaluation representations. In other words, suppose that

Lij(w)or =Y Lij(w, z,y, ) v,
K

for some meromorphic coefficients L;;(w, 2,4, A\)X. Then we want that

L;;(w) Stab(vr) ZL” (w, z,, \) ¥ Stab(vk). (6.1)

The matrix coeflicients L;;(w, z,y, )\)f( are certain meromorphic functions of z,y, A with theta
function-like transformation properties and can thus be considered as meromorphic sections line
bundles on Er(pt). Therefore each summand on the right-hand side is a meromorphic section of
an admissible line bundle. The content of the following theorem is that the sum defines uniquely
an admissible difference operator.

Theorem 6.1.

(1) The formula (6.1) uniquely defines admissible difference operators Lij(w), i,j € {1,2}, of
degree (Lij(w),2(i—j),€(j)) with €(1) = —1, €(2) = 1, for some Sy-equivariant line bundle
Eij(w) on ET(pt).

(ii) These operators obey the RLL relations of the elliptic dynamical quantum group in the
form

peR (w1 — wa, y, \) PP L(wi) M L(we) ) = L(wa)®) L(wy) ")y, R(wy — wa, y, A) 12,

Here the coefficients of the quadratic relations are in A% and the action of g, pr is on
each matrixz element of R.

The proof of this theorem is by explicit description of the action and is parallel to the case
of Yangians and affine quantum enveloping algebras, [8, 15, 16]. We give the formulae for the
action in Sections 6.1, 6.2 and 6.3. The proof of Theorem 6.1 is in Section 6.4.

By Theorem 6.1, the generators L;;j(w) send meromorphic sections of admissible bundles to
meromorphic sections of admissible bundles. The next result gives a more precise control on
the poles of coefficients. We give the action on holomorphic sections, i.e., equivariant elliptic
cohomology classes, both for the torus 7'= U(1)" x U(1) and the group G = U(n) x U(1).

Theorem 6.2.

(i) Let D be the divisor on ET(pt) whose components are the hypersurfaces defined by equations
Zo +y=w, for1 <a<n and)\—i—yj =0, forj=— ,n—1,n. Then L;j(w) maps

HMNX,) e to HEY (X ), o LBLij (w p) for any L € Plc(ET(pt))
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(ii) Let Hé(Xn)g be the space of G-equivariant elliptic cohomology classes of degree L for
G = U(n)xU(1), see Definition 5.18. Let w: Ep(pt) — Eq(pt) be the canonical projection.
View line bundles on Eq(pt) as Sp-equivariant line bundles on Ep(pt). Then the opera-
tors L;j(w) induce well-defined operators from HE(X,)z to HI(Xp ), - LOL (w y) for

each L € Pic(Eg(pt)).
The proof of this theorem is contained in Section 6.4.

Remark 6.3. Let ¢: Er(pt) = Ep(pt) x E — Ep(pt) be the projection onto the first factor.
Since the action of the generators L;j(w) is by admissible difference operators it preserves the
fiber of ¢.HS!(X,,) at a generic point of the non-extended Er(pt). If we realize this fiber as
a certain space of functions of A and tensor with all meromorphic functions of A we get a rep-
resentation of the quantum group in the sense of Section 2.1. By construction, it is isomorphic
to the tensor product of evaluation representations. Thus we can think of the action of the
quantum group on equivariant elliptic cohomology classes as a tensor product of evaluation
representations with variable evaluation points and deformation parameter.

6.1 Action of the Gelfand—Zetlin subalgebra

The Gelfand—Zetlin subalgebra is the commutative subalgebra generated by Loo(w) and the
determinant A(w). As shown in Section 3.10 these operators act diagonally in the basis &1 of
V(z1) ® -+ ® V(zy). It follows that the vectors

£ 'U);(Z[,Z,y, >‘)
= Stab )
3 E_ T 0022 +9) ab(vy)
|J|=k 7
acl,bel

(cf. (3.5)), which by construction are sums of sections of certain admissible line bundles, are
eigenvectors of the Gelfand—Zetlin subalgebra. It turns out that they are sections of admissible
bundles with support on a single irreducible component of Ep(X,,):

Proposition 6.4. Let I, K C [n], |I| = |K| = k. The restriction of £; to the component
of E(Xkp) labeled by K is

. II 0(za —2), I=K,
L& = ] ael,bel

0, otherwise.

Proof. From the definition of £; and Stab(v;) we have

wy Z[,Z ya)\
LK&]_LK<Z ! ) j(t’zvyaA)>

9 Za — 2y + y)
acl, bE
1
= w7 (21, 2,Y, MW7 (2K, 2, Y, A),
[T 00—t ) 27 (2 e e 200 )
ael,bel
which, using Corollary 3.31, proves our statement. |

Thus we can write any section (sy) 1c[n) of an admissible bundle as linear combination

s1€1
Z H 9 Za - Zb)

a€l, bel
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Since the é 1 are eigenvectors the action of the Gelfand—Zetlin algebra is given by admissible
difference operator with diagonal matrices of coefficients.

The action of the determinant A(w) is easiest to describe: it is given by an admissible
difference operator of degree (La(w),0,0), where La(w) = L(Na,va(w)) is the line bundle
associated with the data

n

Na(zy,\) =D (2za+y)y,  valw;z,y,\) = —wy.
a=1

Since Na and va are symmetric under permutations of the variables z;, the corresponding bundle
is naturally Sy,-equivariant. The determinant acts on sections of any admissible line bundle £
on Ep(Xk,p) it acts by multiplication by the section

ﬁ 0 -z + y)
O(w — z)
=1
of La(w).
The action of Log(w) is by an operator of degree (L22(w), 0,1). It is defined on the components
by

_Z’L * %
ti Loo(w)s = H Bw— 2 — ) LS
€K t

n
and L5, (w) = L’(Qk > Zay, kwy), which is an Sp-equivariant line bundle.
a=1

Lemma 6.5. These formulae define S, -equivariant admissible difference operators A(w) €

A(LA(w),0,0) and Loo(w) € A(La2(w),0,1).

Proof. Both operators are defined by diagonal matrices (¢x k) in the notation of Defini-
tion 5.19. It is straightforward to check that the diagonal matrix elements ¢ i are sections of
the correct line bundle. The equivariance property of Lemma 5.25 is clearly satisfied. Moreover
the divisor of poles does not contain any diagonal Ay = {z € B2 2 = 2j,Vi,j € I}, I C [n]
so that the difference operator maps meromorphic sections to meromorophic sections. It remains
to check that the sections on the different components coincide on their intersections, namely
that for every a € K, b€ K,

S0K7K|Za:25b = SOK,KLZO,:ZZ)’ K=K ~ {a} U {b}
This can be checked directly but also follows from the equivariance condition for the permutation
of a and b. |
6.2 Action of L5 and Loy
Let k=1,...,nand K C [n| with |K| =k — 1, then

OAN+w — 24 + (n — 2k + 1)y)
H(w—za—y)
H e(za_zj _y)

—Z] jeK * *
Xgﬁ “%—y) I () K@
J jeK~{a}

ael_(




34 G. Felder, R. Riményi and A. Varchenko

Lemma 6.6. Li2(w) is an Sy -equivariant admissible difference operator of degree (Li2(w),—2,1)
with

Liy(w) = L(=(A+ (n = 2k)y)?, —w(A + (n — k + 1)y)).

Let k=0,...,n—1and K C [n] with |K| =k + 1, then

Z )\ w + Za)
6 O(w — 2z — y)
aeK
[1 0(z — 24 — y)
H e(w — Zj) jekK P —
o0 T 0 ) 0
jeK~{a}

Uie Lot (w)s = (—1)”_k

X

jeK~{a}

Lemma 6.7. Loj(w) is an Sy -equivariant admissible difference operator of degree (L21(w),2,—1)
with

Ly (w) =L (—)\2 — (n—2k+2)y* + 2y ()\ - Zn:z> ;wh— (k+ 1)y)> .

=1

Lemmas 6.6 and 6.7 are proved the same way as Lemma 6.5. The only new feature is the
appearance of simple poles on diagonals z; = z; and it is thus not a priori clear that these
operators map meromorphic sections to meromorphic sections in the sense of Definition 5.8.
The point is that when acting on meromorphic sections, these poles cancel by the equivariance
conditions. For example let us consider the behaviour of ¢ = Ljs(w)s in the vicinity of the
diagonal z, = 2. The matrix element ¢g r(q) has a simple pole there if b € K ~ {a} and
so has the matrix element ¢ g3 Which by equivariance is obtained from ¢ gufqy by the
transposition o12 of a, b. In local coordinates and trivializations compatible with the .S,-action,
by setting f; = txug;371's, J = a,b, the potentially singular term in 3 L12(w)s at z, = zp has
the form

g(zayv A) fa(Z,y7 )\) + g(sabzay7)‘)

fb(012zay7)‘)‘
Za — %b Zp —

Since sqpz = z and f, = f; on the diagonal z, = z, the poles cancel. The same argument works
for L21.
6.3 Action of L,

Since Loo(w) is an invertible admissible difference operator, the action of L1;(w) can be obtain
from the action of the Gelfand—Zetlin algebra and the action of Lis, Loy via the formula for the
determinant

Aw) = B98I L1y 4 ) Laaw) — Los(w + ) Las(w)). (6.2
Here 6()\) is considered as a section of the bundle £(N,0) on E? with N(y,\) = 2.

6.4 Proof of Theorems 6.1 and 6.2

Theorem 6.1(i) for Lgo, Li2 and Lo follows from Lemma 6.5, Lemma 6.6 and Lemma 6.7,
respectively. The operator Li; can be expressed as composition of these admissible difference
operators via the determinant and is thus also admissible. Part (ii) follows by construction.
To prove Theorem 6.2(i) we need to check that in the matrix elements of L;;(w) only simple
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poles at z; = w +y and A = jy, j € Z appear. This is clear from the explicit formulae except
for L11(w). To prove it for this operator, we use two formulae for it: one is using the definition
and the orthogonality relations, and the other expressing it in terms of the other L;; and the
determinant, as in Section 6.3.

The first formula gives

wi (z1) Ly (w)fw] (1)

I = K J * ks, 6.3

B = D e 0 ) 63
T ael bel

The matrix elements Ln(w)f( of L11(w) in the tensor basis vy of ((C2)®n are sums of products
of matrix elements of R-matrices and have at most simple poles at z, = w4y and possible poles
at A = jy, j € Z, see (2.4). Thus the right-hand side of the (6.3) has (among other poles) at
most simple poles at z, = w + y. The second formula is in terms of the determinant:

_ (Y
L= (73

for s € H¥(Xy,)m with g = —n + 2k. From this formula and the explicit expression of Ljs,
Loy, Log we see that only simple poles at A = yu, —n < p < n occur and that the remaining
apparent poles at z, — 2 =0, 2, — 2, + y = 0 in (6.3) are spurious.

Finally Theorem 6.2(ii) holds since the bundles £;;j(w) are Sp-equivariant (and can thus be
viewed as line bundles on the quotient) and the action is given by S,-equivariant difference
operators.

A(w —y) + Loy (w — y)le(w)> Lyo(w +y) s,

7 Shuffle products and stable envelopes for subgroups

The stable envelope of [12] is a map from the equivariant cohomology of the fixed point set
for a torus action on a Nakajima variety to the equivariant cohomology of the variety. The
goal of this section is to extend this interpretation of the stable envelope to the elliptic case
for cotangent bundles of Grassmannians. In our construction the stable envelope is built out
of weight functions, which in turn are obtained from shuffle products of elementary weight
functions associated with the one-point spaces T*Gr(0, 1), T*Gr(1,1). Thus the first step is to
extend the fiber-by-fiber construction of the shuffle product of Section 3 to a shuffle product
defined on sections of the coherent sheaf (:);n on ET(pt). By using the isomorphism (outside
the divisor D) of Theorem 5.16, we get a shuffle product on the sections of the sheaf of elliptic
cohomology classes H%I(ka). The n-fold shuffle product of classes in H%I(Xm), k=0,1is
then essentially the stable envelope.

We propose to view shuffle products of factors of an arbitrary number of factors as stable
envelopes corresponding to subgroups of 1. Their geometric interpretation is that they corre-
spond to maps from the cohomology of the fixed point set for the action of a subgroup of the
torus 7', cf. [12, Section 3.6].

The basic case, which as we shall see corresponds to the shuffie product of two factors, is the
subgroup B, C U(1)"

B=B, ={(z...,2,1,....,1) € A: z ¢ U(1)},
{202 ) zeU(1)}

isomorphic to U(1).

Fixed points for the action of this subgroup on Gr(k,n) are k-planes of the form Vj @& V5,
with V7 in the span of the first m coordinate axes and V5 in the span of the last n —m coordinate
axes. Thus the fixed point set decomposes into connected components according to the dimension
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of V1. Each of these components is a product of Grassmannians. Similarly, the B;,-invariant
part of the cotangent space at a fixed point splits as a direct sum of cotangent spaces at the
factors and we get an isomorphism

B k
Xk’;n = I—ld:()Xd,m X kad,nfm-

As above we consider the action of A, = U(1)" on Xj,. Then the embedding X4, x
Xi—dn—m > Xpn is Apm X Ap—pm = Ap-equivariant. The Kiinneth formula [7] predicts that
this embedding induces a map

EAm (Xd,m) X EAn_m (Xk—d,n—m) - EAn (Xk,n>a (71)
In the description as a fiber product,
Ea,, (Xgm)=E9D x Em=d x ., E™

and the map is the obvious one: ((t/,¢,2'),(t",s",2")) — (p(¢',t"),p(s,s"),2',2"). Here t' €
E@) ¢ e plk=d) . gy plk=d) _y B ig the canonical projection and similarly for the other
factors.

As in Section 4.3, we consider the extended equivariant elliptic cohomology ETn (Xkpn) =
Ea, (Xkn) x E? for the torus T;, = A,, x U(1) where the additional U(1) factor acts by multi-
plication on each cotangent space. We then have the corresponding embedding

ETm (Xd,m) X E? EA‘Tnfm (Xk—d,n—m) - ETn (Xk,n)a (7'2)

where the map to E? is the projection onto the second factor. Both are schemes over ETn (pt) =
Er, (pt) X g2 Er,,_, (Pt).

Proposition 7.1. The shuffle product of Proposition 3.10 defines a map

* 1 7';“7214”9;,11/ X @;/’n// — 92:” ® Ek’,k”,n’,n”

of sheaves of OET(pt)-modules, where k = kK + k", n=n"+n" and Ly o ps pr = E(k”y((n’ _
Kyy—2> za),()) € Pic(ETn(pt)).
a=1

Proof. The sheaf ©;  is defined by the quadratic form N2 (¢, z,y, ), see (5.4). Let us write
t= (1), 2= (2,2"), with ¢/ = (t1,...,tx), t” = (tp41,...,tx) and similarly for z. Then
T;,,izk,,@,j o X @,Jg,, o 18 associated with the quadratic form

M(t,z,y,\) = N,?/’n, ', 2y, \+yn" —2K")) + N]?//’n// (", 2"y, \).

The shuffle product maps a section of this bundle to a section of a bundle associated with the sum
of this quadratic form and the quadratic forms of the theta functions in ¢ ™, see Proposition 3.6,
namely

Kook
Mt 2y, M)+ > Y ((t—ti+y)” =t — 1))
J=11=k'+1
k n’ K

+ Z Z(tl_za+y)2+z Z (t; — )%

I=k'+1a=1 j=1b=n/+1



Elliptic Dynamical Quantum Groups and Equivariant Elliptic Cohomology 37

It is straightforward to verify that this is equal to

NEL (2,0, A) + Ky <<n’ ~ Ky -2y ) |
a=1

This shows that the shuffle product takes values in @ﬁn ® Lyt gt . The fact that it actually
takes values in the subsheaf defined by the vanishing condition follows from Proposition 3.10. W

Definition 7.2. Let k = k' + k", n = n’ +n”. The unnormalized stable envelope associated
with the component Xj v X Xy ,n of the fixed point set X ,f Z/ is the shuffle product map

Stab: T;”—Qk”é;:’,n/ X é—]://’n// — é;:,n & Ek’,k”,n’,n”

of sheaves of O 5 )—modules.

T, (Pt
By using the isomorphism Oy, = HeTITIL(an) on the complement of the divisor D of Theo-
rem 5.16, we obtain a map

Stab: T;//72k//H§—l;ll, (Xk’7n’) X /H%TIL” (Xk“,n”) — /H%IL (Xk,n) @ Lt gt mt it

on Ep(pt) ~ D.

More generally, we may consider subgroups B = By, x --- x B, C U(1)" whose fixed point
sets have components Xy, ,, X --- x X, and define stable envelopes given by r-fold shuffle
products and thus by compositions of stable envelopes for two factors.

Two special cases give the stable envelope of Section 5.5 and the action of the elliptic dy-
namical quantum group.

In the first case we take B = U(1)". The fixed points are isolated and labeled by I C [n].
We think of the fixed point labeled by I as a product Xy, 1 x --- x X3, 1 with k; =1ifi eI
and k; = 0 otherwise. The unnormalized stable envelope on the component labeled by I C [n]
is then

Stab: ®I_; 725 HE (X, 1) = HE (Xk,1) © My,

1

(the factors are ordered from left to right) for some suitable line bundle M; € Pic(Er, (pt))
obtained as tensor product of line bundles Ly 5 n~. In this case the map is defined everywhere,
not just on the complement of D, since Oy 1 = ’HeTll1 (Xk,1) on Er, (pt).

The stable envelope of Section 5.5 is obtained by taking the tensor product with suitable line
bundles 75 My, on Er, (pt) so that @}_oT'(Xp1, HE (Xp1) © My) is identified with C? via
the basis waL , wf , passing to global sections and normalizing by dividing by ;.

In the second case we reproduce the construction of Section 3.7 in the global setting. Thus
we consider the stable envelope for two factors X;1 X Xi_gq, C Xy ,41. We obtain two maps

@5:072—2%—:1)@3:1 MO. 4, ® ‘Cc?,llﬁ—d,l,n = 051
Do T 24Of_4, MO, ® [’lg—ld,d,n,l =01
which are invertible at a generic point. Since (:);1 is isomorphic to H%l (Xk,1) we get a map
@}lzoﬁ,gd@;{,dm R HE (Xq1) ® ﬁi;ld,d,n,l
- @9111:07:—2(k—d)HeT111(Xd,1) MOy ,,® E(;,ilc—d,l,nv

defined on some dense open set. This map contains the information of the action of the elliptic
dynamical quantum group on the elliptic cohomology of ETn (X,). The action of the generators
is given as explained in Section 3.7: one needs as above to take the tensor product with a suitable
line bundle to associate elliptic cohomology classes wf, war with the standard basis of C2. Then
we are in the setting of Section 3.7 and we obtain an action of the elliptic dynamical quantum
group which is up to gauge transformation the one described in the previous section.
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A Axiomatic definition of elliptic stable envelopes

In this section we give an axiomatic definition of the elliptic stable envelopes in the spirit of
Maulik—Okounkov [12, Section 3.3], see also [14, 15, 16].

Recall that c*fwf is a meromorphic section (with controlled denominators) of an appropriate
line bundle over EAT(X;M). The scheme ET(Xk,n) has components Y; = ¢ JET(pt), and the
restriction of a section to Y is the result of substituting the variables ¢; by z; = (z;)ie..

A meromorphic section of an admissible line bundle p.L(N,0) ® Ty, restricted to Y; can be
written as a meromorphic function F: C"*? — C whose transformation properties with respect
to the lattice Z"2 47 Z"*? are determined by P5L(N,0) ® Ty, see Remark 5.4. Below we will
consider special forms of such functions.

Theorem A.l. For any I the section c”‘w}F satisfies the following properties.

e [t is a meromorphic section of an admissible line bundle p5.L(N,0) @ Tip.

(Cn—i-2

o The restriction of c*w? to Yy, written as a function — C with transformation pro-

perties determined by p5L(N,0) @ Tg.p, is

[T 6(za — 2+ €(a,b)y)
acl,bel

1;[10()\ —(w(a,I)+1)y) ’

where €(a,b) is defined in Lemma 3.32 and w(a,I) is defined in (3.4).

o The restriction of c*w? to any Yy, written as a function C"2 — C with transformation
properties determined by pL(N,0) ® Ty.r, is of the form

1
o II II 0Ga-2+y)-Fr, (A1)
acJ beJ, b<a
where Fr j is a holomorphic function.
_l’_

Moreover, these three properties uniquely determine c*wy .

Remark A.2. From the second property one can calculate the quadratic form

Ny = —QZn(a,I)zay - 2Zza(>‘ + n(avj)y)

acl a€el

+(k(n—k) =Y nla,1)y* =Y (A= (n(a, 1) + 1)y +n(a, I)y)*,

acl acl
cf. (5.2).
Remark A.3. Lemma 3.32 (ii) implies the triangularity property
e the restriction of c"‘w;r to Yy is O unless J < 1.
According to Theorem A.1 this property is a consequence of the three properties listed.

Remark A.4. The third listed property is a local version of a support condition used in the
axiomatic description of cohomological stable envelopes in [12, Theorem 3.3.4(i)]; see also the
corresponding axiom in K-theory in [15, Theorem 3.1(T)].
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Proof. The first two properties of c*w? are claimed in Proposition 5.9 and Lemma 3.32(ii).

Inspecting the explicit formula for w}“ in Section 3.11 one finds that, after substitution ¢; by z,,
a € J, all non-zero terms are of the form (A.1), which proves the third property.

Now we prove that the three properties uniquely determine c*w}r. Let a section satisfy the
three listed properties, and let x; be the difference of that section and c*w?. Assume that xj
is not 0. Then there exists a J such that x; restricted to Y is not 0. For a total ordering <
refining the partial order < on the cardinality k subsets of [n] let us choose J to be the largest
with the property rr|y, # 0. We have J # I because of the second property.

We claim that x|y, written as a function C"*2 — C with transformation properties deter-
mined by p5L(N1,0) ® T p, is of the form

JIH [T 0Ga—=+) T1 TI 0 —z2)- B, (A.2)

aeJ beJ,b<a acJbeJ,b>a

where Fj is holomorphic. The fact that this function can be written in the form

ST oGa-a+n)- (A3)

a€d beJ,b<a

with Fb holomorphic, is explicit from the third property. We need to prove that F5 is the

product of ] J] 6(z — 24) and a holomorphic function. Let a € J, b € J and b > a.
acJ bcJ,b>a

Denote J' = (J — {a}) U {b}. Observe that J < J" and hence J < J’. From the choice of J
therefore it follows that sy restricted to Y is 0. The diagonal Ay = {2, = 2} is included
both in Yy and Y}, hence we obtain that the substitution of z, = z, into x|y, vanishes. It
follows that the function F5 vanishes on the hyperplane z, = z, and its translates by the lattice
Z'"2 47 Z"2. The zeros of 0(z, — z,) are exactly these hyperplanes and are of first order,
therefore Fy can be written as a product of 6(z, — z,) times a holomorphic function. Iterating
this argument for all (a,b) with @ € J, b € J, b > a we obtain that (A.3) is in fact of the
form (A.2), what we claimed.

Observe that the product of theta functions in (A.2) is the numerator of ¢*w7|y,. Hence we

obtain that (A.2) further equals
[T 00X = (w(a, J) +1)y)

acJ
()

Since the transformation properties of £y, are determined by pL(Nt,0) ® T, and those of
c*wj|yJ are determined by p5.L(Ny,0) ® Tk n, we have that the transformation properties of

I1 603~ (w(a. /) + 1))
ac
- F A4
Y1 ! (A4)
are determined by P57 L(Nr — Ny, 0) — the factor Ty, canceled.
Let a € JN I, and consider (A.4) as a function of z,, let us call it f(z,). Since the first
factor (the fraction) only depends on A and y, f is a holomorphic function of z, for generic y, \.
Comparing the z, dependence of Ny and N we obtain that

flra+7) =MLz flza +1) = f(za), (A.5)

*, +
- C ’LUJ‘YJ~F1.

for some integer s. Using the 1-periodicity, we expand

f(za) _ Z ame%rimz(z’

meZ
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and using the first transformation property of (A.5) we obtain

§ :ame%rlmza (e2ﬂ'1mT _ e—27r1()\+sy)) =0,

m

implying a,, = 0 for all m € Z. We obtained F; = 0, and in turn, 7|y, = 0. This is
a contradiction proving that x; is 0 on all Y. |
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