
Compack user’s guide

Ulrik Skre Fjordholm

Contents

Chapter 1. Introduction 5
1.1. Who is this for 5
1.2. A note on code organization 5

Chapter 2. Getting started 7
2.1. A first example 7
2.2. Further examples 9

Chapter 3. Extending Compack 11
3.1. Numerical fluxes 11
3.2. Models 13

3

CHAPTER 1

Introduction

1.1. Who is this for

Compack (Conservation law MATLAB package) is a MATLAB package for
solving hyperbolic conservation laws in one and two spatial dimension. Emphasis
has been put on accessibility to inexperienced programmers and people new to the
field of conservation laws, while at the same time being easy to extend and modify.
The program implement solvers for everything from linear scalar equations to non-
linear systems of equations in one and two spatial dimensions on both Cartesian,
rectangular and triangular (unstructured) meshes.

Compack has been tested and works for MATLAB 7.9, and should work for
version 7.6 and later.

1.2. A note on code organization

The program is organized into MATLAB packages, which are folders that begin
with a + character. To call functions within a package, the function must be
prefixed by the package name, followed by a . character. For instance, to call the
plotSolution() function in the Plot package, type Plot.plotSolution(). For more
information, see the MATLAB help page on packages.

5

CHAPTER 2

Getting started

2.1. A first example

The easiest way of learning how to use Compack is through the examples in
the Examples package. In this section we go through the linAdv() example, which
computes an approximate solution to the linear advection equation

ut + aux = 0

for an a ∈ R on the periodic domain x ∈ [−1, 1]. Run this function now by
navigating to the Compack base directory and typing Examples.linAdv(). You
should see an animation of a moving sine wave slowly decaying in magnitude. If
you open the linAdv.m file you will see the following:

1 function soln = linAdv
2 %%% Set configurations
3 conf = Configuration;
4

5 % Create the model object and set the advection speed to 1
6 conf.model = Model.LinAdv;
7 conf.model.a = 1;
8

9 conf.solver = Flux.Rusanov;
10 conf.timeInt = @TimeIntegration.FE;
11 conf.tMax = 2;
12 conf.CFL = 0.4;
13 conf.mesh = Mesh.Cartesian([−1,1], 200);
14 conf.bc = Mesh.BC.Periodic;
15 conf.initial = @(x) sin(2*pi*x);
16

17

18 %%% Run solver
19 soln = runSolver(conf);
20

21

22 %%% Display data, etc.
23 Plot.plotSolution(soln, [−1,1]);
24 end

Let’s go through the code line-by-line.

3 conf = Configuration;

The first thing you do is create a Configuration object. The Configuration object
contains all information about the problem you want to solve, such as which model

7

8 2. GETTING STARTED

to solve, which numerical flux to use, information on the computational domain,
etc.

6 conf.model = Model.LinAdv;
7 conf.model.a = 1;

Next, we create and configure the model object. Since we wish to solve the linear
advection equation, we use the LinAdv class. Other model classes that are currently
implemented are Burgers for the Burgers equation, Wave for the wave equation and
SW for the shallow water system. The LinAdv class has a parameter a specifying the
advection speed. Above we set this speed to 1.

9 conf.solver = Flux.Rusanov;

The Flux package contains all numerical fluxes. Implementing additional fluxes is
simply a matter of adding a new MATLAB class file to this package. Above we set
the solver property of the Configuration object to an instance of the Rusanov class.

10 conf.timeInt = @TimeIntegration.FE;
11 conf.tMax = 2;
12 conf.CFL = 0.4;

Next, we specify parameters relating to the time integration. The FE() function
in the TimeIntegration package implements a forward-Euler discretization of the
time derivative ut. Other functions in this package are RK2, RK3 and RK4, which
implement 2nd, 3rd and 4th order Runge-Kutta integration methods. Note the
usage of the at symbol @ before the name of the function. This returns a function
handle to the function, instead of calling the function. For more information see
the MATLAB help page on function handles.

In line 11 we specify that we want to compute up to t = 2, and in line 12 we
set the CFL number to 0.4.

13 conf.mesh = Mesh.Cartesian([−1,1], 200);
14 conf.bc = Mesh.BC.Periodic;

Here we set properties relating to the computational domain. First, we specify
the computational domain by creating a Cartesian object. The constructor takes
a 2-vector specifying the computational domain (in this case x ∈ [−1, 1]) and the
number of grid points to discretize with.

On line 14 we set the boundary condition to periodic, meaning

u(−1) = u(1).

Also implemented is the Neumann class, which gives a homogeneous Neumann bound-
ary condition

ux(−1) = 0, ux(1) = 0.

15 conf.initial = @(x) sin(2*pi*x);

2.2. FURTHER EXAMPLES 9

Last, we specify the initial data, in this case a sine wave. If you find the above
syntax strange, read the MATLAB help page on anonymous functions.

19 soln = runSolver(conf);

Now that the Configuration object has been initialized, we can run the solver
through the runSolver() function. This might take some time, depending on the
speed of your computer. The return value is an object of the Solution class, the
second important class in Compack. This object contains all information about the
computed solution – most importantly, the solution itself. In this simple example,
the Solution object is used to plot the computed solution in the following function
call:

23 Plot.plotSolution(soln, [−1,1]);

The plotSolution() function, part of the Plot package, plots the computed solution
over time. To start the animation, press Enter or click inside the figure that appears.
The plotSolution() function takes the Solution object and two additional, optional
parameters: the axis scaling and the name of the variable to plot. The latter is
only relevant for systems of conservation laws, where you have several different
variables, and has been left out in this example. The axis scaling parameter forces
MATLAB to use the specified range for the y-axis (or z-axis for two-dimensional
conservation laws) in the figure. Replacing this parameter by 0 or simply leaving
it out will prompt MATLAB to use its default axis scaling.

2.2. Further examples

The Examples package contains several example scripts. As with linAdv(),
these examples are run by simply typing Example.nameOfExampleFile while in the
Compack base directory. A short description of some of the example files follow.

• linAdv2D: This function computes the two-dimensional linear advection
equation

ut + a1ux + a2uy = 0

in the periodic domain (x, y) ∈ [−1, 1] × [−1, 1]. Note in particular the
minor changes from the linAdv example: the advection speed is now a
vector [a1, a2]; the computational domain is a 2× 2 array; and the initial
data is a function of two variables x and y.

• linAdvOOC: This function sets up the same problem as in linAdv(), with
two important differences. First, a second-order time integration method
(RK2) is used instead of the first-order FE forward-Euler method, and sec-
ond, a the second-order minmod slope limiter Lim_MM is set in the recon-
struction phase of the algorithm. This will result in an overall second-
order accurate method. To check that this is indeed the case, we use the
calcOOC function of the Error package to calculate an approximate rate of
convergence:

15 %%% Calculate rate of convergence
16 % Exact solution of the linear advection equation
17 exact = Error.exact linAdv(conf.initial);

10 2. GETTING STARTED

18 % Which mesh sizes to compute over
19 nx = 100:100:500;
20 % Which Lˆp norms to compute
21 p = [1, inf];
22 % Calculate the approximate rate of convergence.
23 Error.calcOOC(conf, exact, nx, p);

The exact_linAdv function returns a function (or more precisely, a function
handle) that computes the exact solution at any point of time, given the
initial data conf.initial. We set the calcOOC method to compute errors
over mesh sizes nx = 100, 200, . . . , 500, and last we specify that we want
to compute errors in both the L1 and L∞ norms.

If you run linAdvOOC, the computer will work for some time and then
output the results to console, in addition to plotting error graphs. You
will notice that the computed rate of convergence is not the expected
one of 2, but something between 1 and 2. By experimenting with using
a lower CFL number (to minimize the effect of time discretization) or a
more accurate time integration method (such as RK3 or RK4), or testing
different limiters (such as the MC limiter Lim_MC or the superbee limiter
Lim_SB), you may get convergence rates closer to 2.

• burgers: This function solves Burgers’ equation

ut +

(
u2

2

)
x

= 0

using Roe’s method. Since this method is different for different mod-
els (that is, for different fluxes f), the Roe class is found in the Burgers

subpackage of the Flux package:

6 conf.solver = Flux.Burgers.Roe;

CHAPTER 3

Extending Compack

Compack has been written to facilitate quick and easy implementation of new
numerical fluxes, boundary conditions, slope limiters etc. In this section we outline
how to implement some of these yourself.

The package User has been created to hold your user scripts. A good starting
point would be to copy one of the files found in the Examples package (for instance
the linAdv function) to the +User folder and play around with that copy.

In the remainder of this section we explain by example how to extend different
parts of the program.

3.1. Numerical fluxes

The library of numerical fluxes that comes with Compack is rather limited,
so we will implement an additional method, the upwind method, for the linear
advection equation. Recall that when the advection speed a is positive, this method
takes the form

Un+1
j = Un

j − a
∆t

∆x

(
Un
j − Un

j−1
)
,

and when a is negative,

Un+1
j = Un

j − a
∆t

∆x

(
Un
j+1 − Un

j

)
.

This can be written in the flux form

Un+1
j = Un

j −
∆t

∆x

(
Fj+1/2 − Fj−1/2

)
by setting

F (UL, UR) =

{
aUL if a > 0

aUR if a < 0.

To start, we create a new file Upwind in the Flux.LinAdv package, and start with
the class skeleton

1 classdef Upwind < Flux.NumFlux
2 %UPWIND Upwind scheme

Numerical fluxes in Compack are implemented as MATLAB classes. As all numer-
ical fluxes share some common properties, such as the need to access the Model

object, they derive from the base class Flux.NumFlux. Next, we specify the name of
the solver by setting the name property:

4 properties
5 name = 'Upwind'

11

12 3. EXTENDING COMPACK

6 end

All classes deriving from the Flux.NumFlux must define this property. Last, we
implement the flux method and close the class definition by adding

8 methods
9 function ret = F(obj, Ul, Ur, UlR, UrR, t, dt)

10 a = obj.model.a(1);
11 if a > 0
12 ret = a*UlR;
13 else
14 ret = a*UrR;
15 end
16 end
17 end
18 end

Let’s go through this line-by-line. In line 8 we start a class method block with the
methods directive. Line 9 contains the function declaration of our numerical flux
function F. The obj variable is a pointer to the Upwind object, akin to the this

pointer in C++ and Java or the self pointer in Python. The next two parameters
Ul and Ur are the left and right cell averages. Next come the left and right recon-
structed values UlR and UrR. When no reconstruction procedure is used, we have
UlR = Ul and UrR = Ur. To use the MUSCL-type approach of higher-order accurate
numerical fluxes, one should use UlR, UrR instead of their cell average counterparts
Ul, Ur. Last come the current time t and the time step dt – none of which are used
in the present function.

In line 11 we check if the advection speed in the x-direction – the first compo-
nent of the a property – is positive. Here, model is a property of the NumFlux base
class, and is simply a pointer to the Model object that we created earlier. If the
advection speed turns out to be positive, we set the flux to be the flux coming from
the left state, a*Ul; if not, we set it to be a*Ur. The full listing of the Upwind class
then reads

1 classdef Upwind < Flux.NumFlux
2 %UPWIND Upwind scheme for the linear advection equation
3

4 properties
5 name = 'Upwind'
6 end
7

8 methods
9 function ret = F(obj, Ul, Ur, UlR, UrR, t, dt)

10 a = obj.model.a(1);
11 if a > 0
12 ret = a*UlR;
13 else
14 ret = a*UrR;
15 end
16 end
17 end
18 end

3.2. MODELS 13

Using the Upwind class is now simply a matter of setting

1 conf.solver = Flux.LinAdv.Upwind;

in your user script.

3.2. Models

By ”model” we mean the equation that we are trying to solve,

ut + f(u)x = 0.

The model is uniquely determined by the flux function f . To implement a new
model in Compack, the flux function must be supplied, along with some helper
functions. This is done by extending the Model.ModelBase base function.

Note that all non-static member functions have a parameter o, which is a handle
to the current model object (similar to this in C++ or self in Python).

3.2.1. Model.ModelBase methods.
Public methods with a default implementation.

calcTimestep(o, U, mesh)

Calculates the maximum currently allowable timestep using the maxEig function.
Called by runSolver.

breaksPositivity(o, U)

Some models have one or more variables that must be in a certain range to make
sense physically. For instance, pressure and density cannot be negative. Model
classes can overload this function to check whether a solution is in the required
range, returning true if it is and false if it isn’t. The solver will immediately stop
running if this happens.

maxEig(o, U, d)

Computes the maximum eigenvalue of the flux Jacobian in direction d in each
cell. d is either an integer ∈ {1, 2}, or an array of normal vectors. If d∈ {1, 2},
then the return value is maximum eigenvalue of df(d)

dU (U) (1 and 2 indicate x- or
y-direction, respectively). If d is an array of normal vectors, then the return value

is the maximum eigenvalue of d(f ·n)
dU (U). The work of computing these is delegated

to maxEigRect and maxEigDir, respectively.

getVariable(soln, U, varname)

Extracts or computes a specific component from the solution U. varname is ei-
ther an integer index into the solution vector, or a string describing the vari-
able. If varname is a string, then the function doGetVariable(soln, U, varname)

is used to compute the variable. This function is static, so it can be called as
ModelName.getVariable(...), where ModelName is the model class.
As an example, if soln is the Solution object for a computation for the Euler equa-
tions, use
[t,U] = soln.get(soln.end());

rho = model.getVariable(soln, U, 'rho');

14 3. EXTENDING COMPACK

to retrieve the density component at the last timestep.

doGetVariable(o, soln, U, varname) (protected)
Called by getVariable. Returns the variable with name varname from the solution
vector U. This computation is model-specific, and hence this function must be over-
loaded in each model class. The default implementation returns the first component
of U, equivalent to getVariable(soln, U, 1).

maxEigRect(o, U, dir) (protected, abstract)

Called by maxEig. Computes the maximum eigenvalue of df(d)

dU (U). This function
must be implemented in all model classes.

maxEigDir(o, U, n) (protected)

Called by maxEig. Computes the maximum eigenvalue of d(f ·n)
dU (U). The default

implementation computes this as |λ·n|, where λ is a vector containing the maximum
eigenvalue in each direction, computed with maxEigRect.

