Algebra II

Exercise sheet 12

GALOIS EXTENSIONS AND GALOIS CORRESPONDENCE

1. Consider the polynomial $f(x) = x^2 - 2$. Determine the Galois group of K/\mathbb{Q} , where K is the splitting field. The same question as above for

$$g(x) = (x^2 - 2)(x^2 - 3).$$

Then, via the Galois correspondence, give the factorisation of g over each intermediate field $\mathbb{Q} \subset L \subset K$.

- 2. Let $q = p^n$ be the *n*-th power of a prime *p*. Show that the extension $\mathbb{F}_q/\mathbb{F}_p$ is Galois and that its Galois group is the cyclic group C_n generated by the Frobenius endomorphism $\Phi_p(x) = x^p$. Prove that the Main Theorem of Galois theory is true for this extension.
- 3. Set $K = \mathbb{Q}(\sqrt[3]{2}, \omega)$ for $\omega = e^{2\pi i/3}$. Show that K/\mathbb{Q} is Galois and that its Galois group is isomorphic to S_3 . Describe the Galois correspondence for this particular example.
- 4. We give a proof of the Fundamental Theorem of Algebra using Galois theory. Let K be a finite field extension of \mathbb{R} .
 - (a) Assume that K/\mathbb{R} is a Galois extension. Show that there is a chain of fields

$$\mathbb{R} \subset K_1 \subset \cdots \subset K_n = K$$

such that

- i. $[K_{i+1}: K_i] = 2$, for $1 \le i \le n-1$,
- ii. $[K_1 : \mathbb{R}]$ odd.
- (b) Show that if $[K : \mathbb{R}] = 2$, then K is isomorphic to \mathbb{C} .
- (c) Show that if $[K : \mathbb{R}]$ is odd, then $K = \mathbb{R}$.
- (d) Conclude that K is either \mathbb{R} or \mathbb{C} .
- * **Hints** : In exercise 3, you may consider the action of the Galois group on the set $\{\sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2\}$. In exercise 4(a), recall the first Sylow theorem.