D-MATH
Prof. Brent Doran

Algebra II

Serie 3

Unique factorization domains

1. Show that $\mathbb{Z}[\sqrt{2}]$ is a Euclidean domain.
2. (a) Show that the size function on $\mathbb{Z}[i]$ is multiplicative.
(b) Describe a systematic way to do division with remainder in $\mathbb{Z}[i]$, and use it to divide $4+36 i$ by $5+i$.
(c) Let $a, b \in \mathbb{Z}$. Show that their greatest common divisors in \mathbb{Z} and $\mathbb{Z}[i]$ coincide.
(d) Let $p \in \mathbb{N}$ be a prime with $p \equiv 3 \bmod 4$. Show that p is also prime in $\mathbb{Z}[i]$.
(e) Decompose $-1+3 i$ into irreducible factors in $\mathbb{Z}[i]$
3. Decompose $x^{3}+x+2$ into irreducible factors in $\mathbb{F}_{3}[x]$.
4. Let $F[x]$ be a polynomial ring over a field F. Prove that there are infinitely many monic irreducible polynomials in $F[x]$.
Hint : Check out Euclid's proof of the infinitude of primes.
5. Establish a bijective correspondence between maximal ideals of $\mathbb{R}[x]$ and points in the upper half-plane $\{(x, y): x, y \in \mathbb{R}, y \geqslant 0\}$.
