D-MATH
Prof. Brent Doran

Algebra II

Problem set 6

Field extensions, irreducible and transcendental elements

1. Let α be a complex root of $x^{3}-3 x+4$. Find the inverse of $\alpha^{2}+\alpha+1$ in the form $a \alpha^{2}+b \alpha+c$, with $a, b, c \in \mathbb{Q}$.
2. Let $\beta=\sqrt[3]{2} e^{2 \pi i / 3}$. Prove that $x_{1}^{2}+\cdots+x_{k}^{2}=-1, k \geqslant 1$, has no solutions with all $x_{i} \in \mathbb{Q}(\beta)$.
3. (a) Show that $\sqrt{3} \notin \mathbb{Q}$, and $\sqrt{2} \notin \mathbb{Q}(\sqrt{3})$.
(b) Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.
(c) Determine the degrees of the extensions $\mathbb{Q}(\sqrt{3})$ over \mathbb{Q} and $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over $\mathbb{Q}(\sqrt{3})$.
4. Let $K=F(\alpha)$ be a field extension generated by a transcendental element α, and let β be an element of K that is not in F. Prove that α is algebraic over the field $F(\beta)$.
