D-MATH
Prof. Brent Doran

Degree of field extension, minimal polynomial

1. (a) Let F be a field, and let α be an element that generates a field extension of F of degree 5. Prove that α^{2} generates the same extension.
(b) Prove the last statement for 5 replaced by any odd integer.
2. Prove that $x^{4}+3 x+3$ is irreducible over $\mathbb{Q}[\sqrt[3]{2}]$.
3. Let $K=\mathbb{Q}(\alpha)$ where α is a root of $x^{3}-x-1$. Determine the irreducible polynomial for $1+\alpha^{2}$ over \mathbb{Q}.
4. Determine the irreducible polynomials for $\alpha=\sqrt{3}+\sqrt{5}$ over the following fields

$$
\mathbb{Q}, \quad \mathbb{Q}[\sqrt{5}], \quad \mathbb{Q}[\sqrt{10}], \quad \mathbb{Q}[\sqrt{15}] .
$$

5. A field extension K / F is an algebraic extension if every element of K is algebraic over F.
(a) Let L / K and K / F be algebraic extensions. Prove that L / F is an algebraic extension.
(b) Let $\alpha, \beta \in \mathbb{C}$. Prove that if $\alpha+\beta$ and $\alpha \beta$ are algebraic numbers, then α and β are also algebraic numbers.
