Algebra II

Problem set 7

DEGREE OF FIELD EXTENSION, MINIMAL POLYNOMIAL

- 1. (a) Let F be a field, and let α be an element that generates a field extension of F of degree 5. Prove that α^2 generates the same extension.
 - (b) Prove the last statement for 5 replaced by any odd integer.
- 2. Prove that $x^4 + 3x + 3$ is irreducible over $\mathbb{Q}[\sqrt[3]{2}]$.
- 3. Let $K = \mathbb{Q}(\alpha)$ where α is a root of $x^3 x 1$. Determine the irreducible polynomial for $1 + \alpha^2$ over \mathbb{Q} .
- 4. Determine the irreducible polynomials for $\alpha = \sqrt{3} + \sqrt{5}$ over the following fields

$$\mathbb{Q}, \quad \mathbb{Q}[\sqrt{5}], \quad \mathbb{Q}[\sqrt{10}], \quad \mathbb{Q}[\sqrt{15}].$$

- 5. A field extension K/F is an algebraic extension if every element of K is algebraic over F.
 - (a) Let L/K and K/F be algebraic extensions. Prove that L/F is an algebraic extension.
 - (b) Let $\alpha, \beta \in \mathbb{C}$. Prove that if $\alpha + \beta$ and $\alpha\beta$ are algebraic numbers, then α and β are also algebraic numbers.