D-MATH
Prof. Brent Doran

Algebra II
FS 2014

Exercise set 9

Splitting fields, finite fields

1. Let F be a field of characteristic zero, and let g be an irreducible polynomial that is a common divisor of f and f^{\prime}. Prove that g^{2} divides f.
2. Let \mathbb{F} denote a finite field. Prove that \mathbb{F} has p^{r} elements, for some prime $p>1$ and positive integer r.
3. Let K denote the splitting field of a polynomial $f(x) \in F[x]$ of degree d. Prove that $[K: F]$ divides d !.
4. Factor $x^{9}-x$ and $x^{27}-x$ in \mathbb{F}_{3}.
5. Let \mathbb{F} be a field of characteristic $p \neq 0,3$. Show that, if α is a zero of $f(x)=x^{p}-x+3$ in an extension field of \mathbb{F}, then $f(x)$ has p distinct zeroes in $\mathbb{F}(\alpha)$.
6. Let F denote a field, p a prime and take $a \in F$ such that a is not a $p^{\text {th }}$ power. Show that $x^{p}-a$ is irreducible over F.
