D-MATH
Prof. Brent Doran

Rings \& Fields

This is an open-book exam. You may use any result seen in class or in the exercises without proof. The first exercise is a catalog of questions running through the material on rings and fields. You should be able to answer such questions at the oral exam.

Have fun!

## First part -

1. A review of the semester.
(a) Is the quotient of an integral domain necessarily an integral domain?
(b) Is the ring $R=\mathbb{Z}[x] /\left(x^{3}+1,2\right)$ actually a field ?
(c) Find all the ideals of $R$.
(d) Is $x^{5}+867 x^{4}+153 x+351$ irreducible over $\mathbb{Z}$ ?
(e) Can you find algebraic elements of any degree over $\mathbb{Q}$ ?
(f) Give an example of a field extension of degree 10.
(g) Is the regular 7 -gon constructible ? What about the regular 8 -gon?
(h) What is the degree of the splitting field of $x^{4}+4$ over $\mathbb{Q}$ ?
(i) Consider the rings

$$
\mathbb{Z} /(5) \times \mathbb{Z} /(5), \quad \mathbb{Z} /(25), \quad \mathbb{F}_{25}
$$

Say which one are fields and which ones are isomorphic to each other.

## Second part -

2. In this exercise, we compare

$$
R_{p}=\mathbb{F}_{p}[x] /\left(x^{2}-2\right), \quad S_{p}=\mathbb{F}_{p}[x] /\left(x^{2}-3\right) .
$$

(a) Exhibit an explicit isomorphism between $R_{2}$ and $S_{2}$.
(b) Prove that $R_{5}$ is a field, and that it has 25 elements.
(c) Are $R_{5}$ and $S_{5}$ isomorphic ? What about $R_{11}$ and $S_{11}$ ?
3. We give here a direct proof that $\mathbb{Z}[\sqrt{5}]$ is not a unique factorization domain.
(a) Exhibit a factorization of $x^{2}+x-1$ into two linear polynomials over $\mathbb{Q}(\sqrt{5})$.
(b) Prove that $x^{2}+x-1$ is irreducible over $\mathbb{Z}[\sqrt{5}]$.
(c) Conclude that $\mathbb{Z}[\sqrt{5}]$ is not a unique factorization domain.
4. Let $p$ be a prime. We show that $x^{p}-2$ is irreducible over $\mathbb{Q}\left[\zeta_{p}\right]$, where $\zeta_{p}$ denotes the $p$-th root of unity.
(a) Why is $\left[\mathbb{Q}\left[\zeta_{p}, \sqrt[p]{2}\right]: \mathbb{Q}\right] \leqslant p(p-1)$ true ?
(b) Show that $\left[\mathbb{Q}\left[\zeta_{p}, \sqrt[p]{2}\right]: \mathbb{Q}\right]=p(p-1)$.
(c) Conclude that $x^{p}-2$ is irreducible over $\mathbb{Q}\left[\zeta_{p}\right]$.
5. On square roots in finite fields. Let $F$ be a finite field of $q=p^{r}$ elements. We say that $a \in F$ has a square root if the congruence equation $x^{2} \equiv a \bmod q$ has a solution.
(a) Show that $F^{\times} \rightarrow F^{\times}, x \mapsto x^{2}$ is a group homomorphism.
(b) Show that if $p=2$ then every element has a square root in $F$.
(c) Show that, if $p>2$, the non-zero square roots of $F$ are exactly the solutions to $x^{\frac{q-1}{2}} \equiv 1 \bmod q$. Deduce that -1 is a square root in $F$ if and only if $q \equiv 1$ $\bmod 4$.
(d) Consider the subfield $K$ generated by $\left\{x^{3}: x \in F\right\}$. Show that if $K$ is not the whole of $F$, then $F$ must be isomorphic to $\mathbb{F}_{4}$.

