Algebra II

FS 2014

Midterm

RINGS & FIELDS

This is an open-book exam. You may use any result seen in class or in the exercises without proof. The first exercise is a catalog of questions running through the material on rings and fields. You should be able to answer such questions at the oral exam.

Have fun !

First part –

1. A review of the semester.

- (a) Is the quotient of an integral domain necessarily an integral domain ?
- (b) Is the ring $R = \mathbb{Z}[x]/(x^3 + 1, 2)$ actually a field ?
- (c) Find all the ideals of R.
- (d) Is $x^5 + 867x^4 + 153x + 351$ irreducible over \mathbb{Z} ?
- (e) Can you find algebraic elements of any degree over \mathbb{Q} ?
- (f) Give an example of a field extension of degree 10.
- (g) Is the regular 7-gon constructible? What about the regular 8-gon?
- (h) What is the degree of the splitting field of $x^4 + 4$ over \mathbb{Q} ?
- (i) Consider the rings

$$\mathbb{Z}/(5) \times \mathbb{Z}/(5), \quad \mathbb{Z}/(25), \quad \mathbb{F}_{25}.$$

Say which one are fields and which ones are isomorphic to each other.

Second part –

2. In this exercise, we compare

$$R_p = \mathbb{F}_p[x]/(x^2 - 2), \qquad S_p = \mathbb{F}_p[x]/(x^2 - 3).$$

- (a) Exhibit an explicit isomorphism between R_2 and S_2 .
- (b) Prove that R_5 is a field, and that it has 25 elements.
- (c) Are R_5 and S_5 isomorphic ? What about R_{11} and S_{11} ?
- 3. We give here a direct proof that $\mathbb{Z}[\sqrt{5}]$ is not a unique factorization domain.

- (a) Exhibit a factorization of $x^2 + x 1$ into two linear polynomials over $\mathbb{Q}(\sqrt{5})$.
- (b) Prove that $x^2 + x 1$ is irreducible over $\mathbb{Z}[\sqrt{5}]$.
- (c) Conclude that $\mathbb{Z}[\sqrt{5}]$ is not a unique factorization domain.
- 4. Let p be a prime. We show that $x^p 2$ is irreducible over $\mathbb{Q}[\zeta_p]$, where ζ_p denotes the p-th root of unity.
 - (a) Why is $\left[\mathbb{Q}[\zeta_p, \sqrt[p]{2}] : \mathbb{Q}\right] \leq p(p-1)$ true ?
 - (b) Show that $[\mathbb{Q}[\zeta_p, \sqrt[p]{2}] : \mathbb{Q}] = p(p-1).$
 - (c) Conclude that $x^p 2$ is irreducible over $\mathbb{Q}[\zeta_p]$.
- 5. On square roots in finite fields. Let F be a finite field of $q = p^r$ elements. We say that $a \in F$ has a square root if the congruence equation $x^2 \equiv a \mod q$ has a solution.
 - (a) Show that $F^{\times} \to F^{\times}, x \mapsto x^2$ is a group homomorphism.
 - (b) Show that if p = 2 then every element has a square root in F.
 - (c) Show that, if p > 2, the non-zero square roots of F are exactly the solutions to $x^{\frac{q-1}{2}} \equiv 1 \mod q$. Deduce that -1 is a square root in F if and only if $q \equiv 1 \mod 4$.
 - (d) Consider the subfield K generated by $\{x^3 : x \in F\}$. Show that if K is not the whole of F, then F must be isomorphic to \mathbb{F}_4 .