Solutions 12

Galois extensions and Galois correspondence

1. Consider the polynomial $f(x)=x^{2}-2$. Determine the Galois group of K / \mathbb{Q}, where K is the splitting field. The same question as above for

$$
g(x)=\left(x^{2}-2\right)\left(x^{2}-3\right) .
$$

Then, via the Galois correspondence, give the factorisation of g over each intermediate field $\mathbb{Q} \subset L \subset K$.
Solution : The splitting field is $K=\mathbb{Q}(\sqrt{2})$. This is an extension of degree 2 of \mathbb{Q}, so the Galois group has order 2 , and $\operatorname{Gal}(K / \mathbb{Q})=\mathbb{Z} / 2 \mathbb{Z}$. (The two elements are the identity and the automorphism that is constant on rationals and $\sqrt{2} \rightarrow-\sqrt{2}$.)
In the second case, the splitting field is $K=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Then the Galois group has order 4 , and is therefore isomorphic to either the cyclic group $\mathbb{Z} / 4 \mathbb{Z}$ or the Klein four-group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Since its elements are the automorphisms
$\sigma_{1}:\left\{\begin{array}{l}\sqrt{2} \mapsto \sqrt{2} \\ \sqrt{3} \mapsto \sqrt{3}\end{array} \quad \sigma_{2}:\left\{\begin{array}{l}\sqrt{2} \mapsto-\sqrt{2} \\ \sqrt{3} \mapsto \sqrt{3}\end{array} \quad \sigma_{3}:\left\{\begin{array}{l}\sqrt{2} \mapsto \sqrt{2} \\ \sqrt{3} \mapsto-\sqrt{3}\end{array} \quad \sigma_{4}:\left\{\begin{array}{l}\sqrt{2} \mapsto-\sqrt{2} \\ \sqrt{3} \mapsto-\sqrt{3}\end{array}\right.\right.\right.\right.$
and all the non-identity automorphisms have order 2 , the Galois group is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
Then the intermediate fields corresponding to the fixed fields of the subgroups $\left\langle\sigma_{i}\right\rangle$, for $i=2,3,4$, are, respectively

$$
\mathbb{Q}(\sqrt{3}), \quad \mathbb{Q}(\sqrt{2}), \quad \mathbb{Q}(\sqrt{6}) .
$$

The corresponding factorisations are $\left(x^{2}-2\right)(x-\sqrt{3})(x+\sqrt{3}),(x-\sqrt{2})(x+$ $\sqrt{2})\left(x^{2}-3\right)$, and $\left(x^{2}-2\right)\left(x^{2}-3\right)$.
2. Let $q=p^{n}$ be the n-th power of a prime p. Show that the extension $\mathbb{F}_{q} / \mathbb{F}_{p}$ is Galois and that its Galois group is the cyclic group C_{n} generated by the Frobenius endomorphism $\Phi_{p}(x)=x^{p}$. Prove that the Main Theorem of Galois theory is true for this extension.

Solution : Denote by H the finite group generated by the Frobenius endomorphism, i.e. $H=\left\langle\Phi_{p}\right\rangle$. The fixed field \mathbb{F}_{q}^{H} consists of all $x \in \mathbb{F}_{q}$ such that $x^{p}=x$, i.e. $\mathbb{F}_{q}^{H}=\mathbb{F}_{p}$. It follows that $\mathbb{F}_{q} / \mathbb{F}_{p}$ is a Galois extension and that H is its Galois group. Hence $H \simeq C_{n}$.

We show there is a bijective correspondence between subgroups of H and intermediate fields of $\mathbb{F}_{p} \subset \mathbb{F}_{q}$. The subgroups of C_{n} are exactly the subgroups isomorphic to C_{d} for each d that divides n. In particular, here, they are all $\left\langle\Phi_{p}^{d}\right\rangle$ for $d \mid n$. On the other hand, we know that the subfields of \mathbb{F}_{q} are exactly $\mathbb{F}_{p^{d}}$ for $d \mid n$. We see now easily that the fixed field of $\left\langle\Phi_{p}^{d}\right\rangle$ is $\mathbb{F}_{p^{d}}$ and that conversely the Galois extension $\mathbb{F}_{q} / \mathbb{F}_{p^{d}}$ has Galois group $\left\langle\Phi_{p}^{d}\right\rangle$, for each $d \mid n$.
3. Set $K=\mathbb{Q}(\sqrt[3]{2}, \omega)$ for $\omega=e^{2 \pi i / 3}$. Show that K / \mathbb{Q} is Galois and that its Galois group is isomorphic to S_{3}. Describe the Galois correspondence for this particular example.
Solution : The extension K / \mathbb{Q} is Galois as one sees that K is the splitting field for $\left(x^{3}-2\right)\left(x^{2}+x+1\right)$ over \mathbb{Q}. The Galois group $G=$ Aut $_{\mathbb{Q}} K$ has order $[K: \mathbb{Q}]=6$, and its elements are given by

$$
\begin{aligned}
& \sigma_{1}:\left\{\begin{array}{l}
\sqrt[3]{2} \mapsto \sqrt[3]{2} \\
\omega \mapsto \omega
\end{array}\right. \\
& \sigma_{2}:\left\{\begin{array}{l}
\sqrt[3]{2} \mapsto \sqrt[3]{2} \omega \\
\omega \mapsto \omega
\end{array}\right. \\
& \sigma_{4}:\left\{\begin{array}{l}
\sqrt[3]{2} \mapsto \sqrt[3]{2}: \\
\omega \mapsto \omega^{2}
\end{array} \sigma_{5}:\left\{\begin{array}{l}
\sqrt[3]{2} \mapsto \sqrt[3]{2} \omega^{2} \\
\omega \mapsto \omega
\end{array}\right.\right. \\
& \begin{array}{l}
\omega \mapsto \omega^{2}
\end{array}
\end{aligned} \sigma_{6}:\left\{\begin{array}{l}
\sqrt[3]{2} \mapsto \sqrt[3]{2} \omega^{2} \\
\omega \mapsto \omega^{2}
\end{array}\right] .
$$

Note G acts on the subset of roots $\left\{\sqrt[3]{2}, \sqrt[3]{2} \omega, \sqrt[3]{2} \omega^{2}\right\}$. One can check directly that this action is faithful. Hence the permutation representation $G \rightarrow S_{3}$ gives an isomorphism between G and S_{3}.
The intermediate fields of K / \mathbb{Q} are $\mathbb{Q}(\omega), \mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}(\sqrt[3]{2} \omega), \mathbb{Q}\left(\sqrt[3]{2} \omega^{2}\right)$ and the corresponding subgroups are those generated by the 3-cycle and the three transpositions respectively.
4. In this exercise, we give a proof of the Fundamental Theorem of Algebra using Galois theory.
Let K be a finite field extension of \mathbb{R}.
(a) Assume that K / \mathbb{R} is a Galois extension. Show that there is a chain of fields

$$
\mathbb{R} \subset K_{1} \subset \cdots \subset K_{n}=K
$$

with $\left[K_{i+1}: K_{i}\right]=2$, for $1 \leqslant i \leqslant n-1$, and $\left[K_{1}: \mathbb{R}\right]$ odd.
Solution : By assumption, K / \mathbb{R} is a Galois extension and denote by G its Galois group. Write the order of G as $|G|=2^{n} m$, where m is an odd natural number.
By Sylow, there exists a subgroup $G_{1}<G$ of order $\left|G_{1}\right|=2^{n}$. Under the Galois correspondence, there is then an intermediate field K_{1} such that

$$
\left[K_{1}: \mathbb{R}\right]=\left[G: G_{1}\right]=m .
$$

Now repeat the process with the subgroup G_{1} of order 2^{n}. There is a chain of normal subgroups

$$
G_{n} \triangleleft G_{n-1} \triangleleft \cdots \triangleleft G_{1}
$$

such that each G_{l} has order 2^{n-l+1}. By Galois correspondence, it corresponds to a chain of intermediate fields

$$
K_{1} \subset \cdots \subset K_{n}
$$

with $\left[K_{i+1}: K_{i}\right]=2$.
(b) Recall that if $[K: \mathbb{R}]=2$, then K is isomorphic to \mathbb{C}.

Solution : There exists an element $\alpha \in K$ that is not a real. Then we may set $K=\mathbb{R}(\alpha)$. The irreducible polynomial for α must be of the form

$$
f(x)=x^{2}+a x+b=\left(x+\frac{a}{2}\right)^{2}-\frac{\Delta}{4} .
$$

Moreover, the discriminant Δ must be strictly negative, since f is irreducible. Hence, via successive substitutions,

$$
K=\mathbb{R}[x] /(f(x)) \simeq \mathbb{R}[y] /\left(y^{2}-\frac{\Delta}{4}\right) \simeq \mathbb{R}[z] /\left(z^{2}+1\right) \simeq \mathbb{C}
$$

(c) Show that if $[K: \mathbb{R}]$ is odd, then $K=\mathbb{R}$.

Solution : There exists an element $\alpha \in K$ that is not a real. The irreducible polynomial for α has degree exactly $[\mathbb{R}(\alpha): \mathbb{R}]$. Because this degree divides $[K: \mathbb{R}]$, it must be odd. By the Intermediate Value Theorem, the irreducible polynomial must have a real zero. But since the polynomial is by definition irreducible, it must be of degree 1 and $\alpha \in \mathbb{R}$.
(d) Conclude that K is either \mathbb{R} or \mathbb{C}.

Solution : The finite extension K is contained in a Galois extension k of \mathbb{R}. In particular, for the chain of fields

$$
\mathbb{R} \subset K_{1} \subset \cdots \subset K_{n}=k,
$$

we conclude from subquestions (b) and (c) that $K_{1}=\mathbb{R}$ and, if $n>1$, $k=K_{2}=\mathbb{C}$, since there can be no extension of degree two over \mathbb{C}. In fact, assume there was : let $\alpha \in K$ that is not a complex value and $[K: \mathbb{C}]=2$. But then by the quadratic formula, we know explicitly that the minimal polynomial for α has complex roots, contradicting the irreducibility of the polynomial over \mathbb{C}.

