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Solutions 12

Galois extensions and Galois correspondence

1. Consider the polynomial f(x) = x2−2. Determine the Galois group of K/Q, where
K is the splitting field. The same question as above for

g(x) = (x2 − 2)(x2 − 3).

Then, via the Galois correspondence, give the factorisation of g over each inter-
mediate field Q ⊂ L ⊂ K.

Solution : The splitting field is K = Q(
√

2). This is an extension of degree 2 of
Q, so the Galois group has order 2, and Gal(K/Q) = Z/2Z. (The two elements are
the identity and the automorphism that is constant on rationals and

√
2→ −

√
2.)

In the second case, the splitting field is K = Q(
√

2,
√

3). Then the Galois group
has order 4, and is therefore isomorphic to either the cyclic group Z/4Z or the
Klein four-group Z/2Z× Z/2Z. Since its elements are the automorphisms

σ1 :

{√
2 7→

√
2√

3 7→
√

3
σ2 :

{√
2 7→ −

√
2√

3 7→
√

3
σ3 :

{√
2 7→

√
2√

3 7→ −
√

3
σ4 :

{√
2 7→ −

√
2√

3 7→ −
√

3

and all the non-identity automorphisms have order 2, the Galois group is isomor-
phic to Z/2Z× Z/2Z.

Then the intermediate fields corresponding to the fixed fields of the subgroups
〈σi〉, for i = 2, 3, 4, are, respectively

Q(
√

3), Q(
√

2), Q(
√

6).

The corresponding factorisations are (x2 − 2)(x −
√

3)(x +
√

3), (x −
√

2)(x +√
2)(x2 − 3), and (x2 − 2)(x2 − 3).

2. Let q = pn be the n-th power of a prime p. Show that the extension Fq/Fp is
Galois and that its Galois group is the cyclic group Cn generated by the Frobenius
endomorphism Φp(x) = xp. Prove that the Main Theorem of Galois theory is true
for this extension.

Solution : Denote by H the finite group generated by the Frobenius endomor-
phism, i.e. H = 〈Φp〉. The fixed field FHq consists of all x ∈ Fq such that xp = x,
i.e. FHq = Fp. It follows that Fq/Fp is a Galois extension and that H is its Galois
group. Hence H ' Cn.
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We show there is a bijective correspondence between subgroups of H and interme-
diate fields of Fp ⊂ Fq. The subgroups of Cn are exactly the subgroups isomorphic
to Cd for each d that divides n. In particular, here, they are all 〈Φd

p〉 for d|n. On the
other hand, we know that the subfields of Fq are exactly Fpd for d|n. We see now
easily that the fixed field of 〈Φd

p〉 is Fpd and that conversely the Galois extension
Fq/Fpd has Galois group 〈Φd

p〉, for each d|n.

3. Set K = Q( 3
√

2, ω) for ω = e2πi/3. Show that K/Q is Galois and that its Galois
group is isomorphic to S3. Describe the Galois correspondence for this particular
example.

Solution : The extension K/Q is Galois as one sees that K is the splitting field for
(x3− 2)(x2 + x+ 1) over Q. The Galois group G = AutQK has order [K : Q] = 6,
and its elements are given by

σ1 :

{
3
√

2 7→ 3
√

2

ω 7→ ω
σ2 :

{
3
√

2 7→ 3
√

2ω

ω 7→ ω
σ3 :

{
3
√

2 7→ 3
√

2ω2

ω 7→ ω

σ4 :

{
3
√

2 7→ 3
√

2

ω 7→ ω2
σ5 :

{
3
√

2 7→ 3
√

2ω

ω 7→ ω2
σ6 :

{
3
√

2 7→ 3
√

2ω2

ω 7→ ω2

Note G acts on the subset of roots { 3
√

2, 3
√

2ω, 3
√

2ω2}. One can check directly that
this action is faithful. Hence the permutation representation G → S3 gives an
isomorphism between G and S3.

The intermediate fields of K/Q are Q(ω), Q( 3
√

2), Q( 3
√

2ω), Q( 3
√

2ω2) and the
corresponding subgroups are those generated by the 3-cycle and the three trans-
positions respectively.

4. In this exercise, we give a proof of the Fundamental Theorem of Algebra using
Galois theory.
Let K be a finite field extension of R.

(a) Assume that K/R is a Galois extension. Show that there is a chain of fields

R ⊂ K1 ⊂ · · · ⊂ Kn = K

with [Ki+1 : Ki] = 2, for 1 6 i 6 n− 1, and [K1 : R] odd.

Solution : By assumption, K/R is a Galois extension and denote by G its
Galois group. Write the order of G as |G| = 2nm, where m is an odd natural
number.

By Sylow, there exists a subgroup G1 < G of order |G1| = 2n. Under the
Galois correspondence, there is then an intermediate field K1 such that

[K1 : R] = [G : G1] = m.
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Now repeat the process with the subgroup G1 of order 2n. There is a chain
of normal subgroups

Gn / Gn−1 / · · · / G1

such that each Gl has order 2n−l+1. By Galois correspondence, it corresponds
to a chain of intermediate fields

K1 ⊂ · · · ⊂ Kn

with [Ki+1 : Ki] = 2.

(b) Recall that if [K : R] = 2, then K is isomorphic to C.

Solution : There exists an element α ∈ K that is not a real. Then we may
set K = R(α). The irreducible polynomial for α must be of the form

f(x) = x2 + ax+ b =
(
x+

a

2

)2
− ∆

4
.

Moreover, the discriminant ∆ must be strictly negative, since f is irreducible.
Hence, via successive substitutions,

K = R[x]/(f(x)) ' R[y]/

(
y2 − ∆

4

)
' R[z]/(z2 + 1) ' C.

(c) Show that if [K : R] is odd, then K = R.

Solution : There exists an element α ∈ K that is not a real. The irreducible
polynomial for α has degree exactly [R(α) : R]. Because this degree divides
[K : R], it must be odd. By the Intermediate Value Theorem, the irreducible
polynomial must have a real zero. But since the polynomial is by definition
irreducible, it must be of degree 1 and α ∈ R.

(d) Conclude that K is either R or C.

Solution : The finite extension K is contained in a Galois extension k of R.
In particular, for the chain of fields

R ⊂ K1 ⊂ · · · ⊂ Kn = k,

we conclude from subquestions (b) and (c) that K1 = R and, if n > 1,
k = K2 = C, since there can be no extension of degree two over C. In fact,
assume there was : let α ∈ K that is not a complex value and [K : C] = 2.
But then by the quadratic formula, we know explicitly that the minimal
polynomial for α has complex roots, contradicting the irreducibility of the
polynomial over C.
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