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Serie 2
Fraction fields and maximal ideals

1. (a) Is there an integral domain that contains exactly 15 elements ?

Solution : The only additive abelian group of order 15 is the cyclic group
Z15 (you can see this with Sylow, and conclude that all groups of order 15
are isomorphic to the product Z3×Z5 of cyclic groups – cf. your notes of last
semester or Section 7.7 in Artin). We show that in this ring, multiplication
is the usual multiplication mod 15. However, 3 · 5 ≡ 0 mod 15. This is a
particular instance of the more general fact that the ring Z/(n) is an integral
domain if and only if n is prime.

(b) Let I ⊂ R be an ideal. Prove that the quotient R/I is an integral domain
if and only if I is a prime ideal. (An ideal I ( R is prime if, for any two
elements a, b ∈ R, ab ∈ I then either a ∈ I or b ∈ I.)

Solution : Recall that an integral domain is, by definition, a non-zero ring,
and R/I 6= 0 and I 6= R are equivalent. Let a, b ∈ R. Since

ab + I = (a + I)(b + I),

ab ∈ I is equivalent to either a + I = I or b + I = I, which are equivalent,
respectively, to a ∈ I and b ∈ I.

2. (a) Show that the quotient R = Q[x, y]/(x2 + y2 − 1) is an integral domain.

Solution : We want to show that (x2 + y2 − 1) is a prime ideal (cf. Exercise
1(b)). This is immediate since x2+y2−1 can not be factorized in the product
of two linear polynomials. We can see this geometrically : there is no way to
make up a circle from two lines !

(b) Write down a stereographic projection of the circle x2+y2 = 1. Use it to show
that the fraction field of R is isomorphic to the field of rational functions
Q(t).

Solution : We express the stereographic projection of the circle from the
point (0, 1) onto the affine line tangent at (0,−1) in Cartesian coordinates :

(x, y) 7→ x

1− y
.
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This map is bijective, with inverse

t 7→
(

2t

t2 + 1
,
t2 − 1

t2 + 1

)
.

Note that rational points are sent to rational points. In the language of alge-
braic geometry, we then say that the circle is birational to the affine line and
that the circle is a rational curve.

Now, consider via the Substitution Principle (11.3.4 in Artin) the homo-
morphism from Q(t) to the fraction field of R that maps (the equivalence

class of) f(t) to (the equivalence class of) f
(

x
1−y

)
. It has inverse homomor-

phism sending (the equivalence class of) f(x, y) to (the equivalence class of)

f
(

2t
t2+1

, t
2−1
t2+1

)
.

3. (a) Let F [x] be a polynomial ring over a field F . Prove that the maximal ideals
of F [x] are the principal ideals generated by monic irreducible polynomials.

Proof : We already know that ideals in a polynomial ring over a field are
principal ideals, and that any non-zero ideal is generated by the unique monic
polynomial of lowest degree it contains (11.3.22 in Artin).

Let (f(x)) be a non-zero principal ideal. If f(x) is factorizable, i.e. there exists
non-constant polynomials g(x), h(x) ∈ F [x] such that f(x) = g(x)h(x), then
(f(x)) is not maximal, since it is contained, e.g., in (g(x)). Conversely, if
(f(x)) is contained in a larger ideal, then it can not be irreducible.

(b) Which principal ideals in Z[x] are maximal ?

Solution : A factorizable polynomial in Z[x] can not generate a maximal
ideal, so let us consider the principal ideal generated by an irreducible poly-
nomial f(x). We show that, for any prime p that does not divide the leading
coefficient of f(x),

(f(x)) ( (p, f(x)) ( Z[x].

The first inclusion is trivial. In the first exercise sheet, we have seen that the
quotient rings Z[x]/(p, f(x)) and Zp[x]/(f(x)) are isomorphic. This quotient
can not be the zero ring since (f(x)) is maximal in Zp[x]. Hence, principal
ideals in Z[x] can not be maximal.

(c) Find the maximal ideals of the following rings :

R1 = R× R, R2 = R[x]/(x2 − 3x + 2), R3 = R[x]/(x2 + x + 1).

Solution : To first determine the ideals of R1 = R×R, consider the projection
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R× R→ R, (x, y) 7→ x. This is a surjective ring homomorphism with kernel
K = {0} × R. Since R is a field, the kernel K is a maximal ideal in R1 (by
the Isomorphism Theorem). The projection on the second factor gives us the
maximal ideal R×{0} by a parallel argument. There can be no further ideal.

Next we apply the Correspondence Theorem to the quotient homomorphism

R[x]→ R[x]/(x2 − 3x + 2) = R2.

Since there is a factorisation

x2 − 3x + 2 = (x− 2)(x− 1),

the ideals (x− 2) and (x− 1) are the only ones containing (x2− 3x+ 2), and
these two ideals are clearly maximal, since R[x]/(x − 2) = R is a field and
similarly for (x − 1). We now conclude by showing that maximal ideals are
sent to maximal ideals under the quotient map. In fact, Let M be a maximal
ideal of R and I an ideal such that I ⊂M ⊂ R. It first follows from the map-
ping property of quotient rings, that there exists a surjective homomorphism
R/I → R/M. Its kernel is M/I. Then, by the first Isomorphism Theorem,

we conclude that R/M and R/I
M/I

are isomorphic. We can conclude that M/I

is a maximal ideal in R/I

In the last case, observe that x2 +x+ 1 is irreducible over R, hence generates
a maximal ideal (cf. (a)). Since R3 is thus a field, its only ideals are {0} and
R3.
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