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Solutions 3
Unique factorization domains

1. Show that Z[
√

2] is a Euclidean domain.

Solution : Introduce the following size function

σ(a+ b
√

2) :=
∣∣∣(a+ b

√
2)(a− b

√
2)
∣∣∣ =

∣∣a2 − 2b2
∣∣ .

We first want to show that Z[
√

2] is an integral domain. We can deduce this from
the fact that the size function is multiplicative, i.e. σ(αβ) = σ(α)σ(β) for all α,
β in Z[

√
2]. We show that division with remainder is possible with respect to σ.

Let α = a+ b
√

2 and let γ = c+ d
√

2 6= 0, with a, b, c, d ∈ Z. Then

α

γ
=
a+ b

√
2

c+ d
√

2
· c− d

√
2

c− d
√

2
=
ac− 2bd

c2 − 2d2︸ ︷︷ ︸
=:α1

+
bc− ad
c2 − 2d2︸ ︷︷ ︸

=:β1

√
2.

We write α1 ∈ Q as α1 = a1 + s1, whereby a1 is the closest integer to α1 and r1 is
the remaining fractional part. We do the same with β1, setting β1 = b1 + t1. The
above division is now expressed as

α

γ
=
(
a1 + b1

√
2
)

︸ ︷︷ ︸
=: q∈Z[

√
2]

+
(
s1 + t1

√
2
)

︸ ︷︷ ︸
=: R

,

and we are left to check that r := Rγ ∈ Z[
√

2] and σ(r) < σ(γ) if R 6= 0. First,
observe that r = α− qγ ∈ Z[

√
2]. Second, we extend σ to Q(

√
2) and compute

σ(r) = σ(R)σ(γ) =
∣∣s21 − 2t21

∣∣σ(γ) 6

(
1

4
+

1

2

)
σ(γ)

where the last inequality comes from the triangle inequality together with the fact
that |s1| , |t1| < 1/2 (by assumption on the decomposition in the nearest integer
value plus fractional part).

2. (a) Show that the size function on Z[i] is multiplicative.

Solution : The size function for the Gaussian integers is given by σ(α) = αα,
α ∈ Z[i]. It follows immediately that

σ(αβ) = αβαβ = σ(α)σ(β).
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(b) Describe a systematic way to do division with remainder in Z[i], and use it
to divide 4 + 36i by 5 + i.

Solution : Let α, β ∈ Z[i] and β 6= 0. Then

α

β
=

αβ

σ(β)
.

Let us introduce some more notation : αβ =: a + bi, with a, b ∈ Z, and
s := σ(β) ∈ N, thus

α

β
=
a

s
+
b

s
i,

where, for each of the fraction, we may apply division with remainder for the
integers.

Implementing this for

4 + 36i

5 + i
=

56

26
+

176

26
i = 2 + 6i+

(
4

26
+

20

26
i

)
.

Multiplying on both sides by 5 + i leaves us with

4 + 36i = (2 + 6i) (5 + i) +

(
4 + 20i

5− i

)
where the remaining fraction is given explicitly by

4 + 36i− (2 + 6i) (5 + i) = 4i.

(c) Let a, b ∈ Z. Show that their greatest common divisors in Z and Z[i] coincide.

Solution : Let d = gcd(a, b). Clearly, d also divides a and b in Z[i]. Let
α ∈ Z[i] be a non-unit element such that α divides both a and b. Because by
Bézout, there exist integers m and n such that d = am + bn, α also divides
d. Hence d is also the greatest common divisor in Z[i].

(d) Let p ∈ N be a prime with p ≡ 3 mod 4. Show that p is also prime in Z[i].

Solution : We show that p is prime in Z[i]. Primes in Z[i] are exactly the
irreducible elements. Let us write p = αβ in Z[i]. We will show that, if α is
not a unit, β needs to be one. First note that the units in Z[i] are ±1 and
±i. In particular, β is a unit if and only if σ(β) = 1. Because

σ(p) = σ(αβ) = σ(α)σ(β),

we need to show that σ(α) = p2. So far, we know that σ(α) divides p2. By
assuming that α is not a unit, we ruled out the possibility σ(α) = 1. Suppose
now that we would have

σ(α) = a2 + b2 = p.
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Because p ≡ 3 mod 4, it is odd and we may assume that a is odd and b even.
But then a2 ≡ 1 mod 4 and b2 ≡ 0 mod 4, and we can not have the above
equality.

(e) Decompose −1 + 3i into irreducible factors in Z[i].

Solution : We use the fact that the size function is multiplicative. Because
σ(−1 + 3i) = 10, the only potential factorisation is one in two irreducible
factors of “size“ 2 and 5 respectively. For instance

−1 + 3i = (1 + i)(1 + 2i).

3. Decompose x3 + x+ 2 into irreducible factors in F3[x].

Solution : We first observe that 2 is a root of the polynomial in F3. This leads to
the factorization

x3 + x+ 2 = (x− 2)(x2 + 2x+ 2)

in F3[x]. We can check directly that the polynomial x2 + 2x+ 2 is irreducible over
F3[x], hence we are done.

4. Let F [x] be a polynomial ring over a field F . Prove that there are infinitely many
monic irreducible polynomials in F [x].
Hint : Check out Euclid’s proof of the infinitude of primes.

Solution : We mimic Euclid’s proof : Let p1, . . . , pn be n monic irreducible poly-
nomials in F [x]. We show that there is always more. In fact, set

P := p1 · p2 · · · pn + 1.

The polynomial P is monic and can be factorized in a product of monic irreducible
polynomials. (Recall that F [x] is a unique factorisation domain.) Consider one
of these monic irreducible factor. Let us call it p∗ and show that it is distinct
from every monic irreducible polynomial in p1, . . . , pn. This is the case, because
otherwise, i.e. if p∗ = pi for some 1 6 i 6 n, p∗ = pi would divide P , and by the
definition of P , pi can divide P only if it divides 1. This contradicts the assumption
that pi is irreducible, and hence we can always find one more monic irreducible
polynomial in F [x].

5. Establish a bijective correspondence between maximal ideals of R[x] and points in
the upper half-plane {(x, y) : x, y ∈ R, y > 0}.

Solution : You already know the bijective correspondence between maximal ideals
of C[x] and points in C from the lecture. (This is Corollarry 11.8.5 in Artin.)
Explicitly, this was the correspondence between monic irreducible polynomials in
C[x], which are of the form x−a for a complex number a, and their root, i.e. a. In
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the real case, not all polynomials have a real root. In fact, for a polynomial of degree
two, there can be one real root, two distinct real roots or two complex conjugated
roots, depending on whether the discriminant of the polynomial is positive, zero
or negative. Only in this last case is a polynomial of degree two irreducible over
R. On the other hand, real polynomials of degree > 2 are necessarily factorizable :
Since over C, there is a factorisation in linear terms with for each complex root,
its complex conjugate also as a root, a higher degree real polynomials factors over
R in a product of linear and quadratic polynomials.

Then, via the correspondence described above, each real root corresponds to its
value on the real line, and for each complex root, since its conjugate is also a root,
we assign the corresponding point in the upper half-plane.
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