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Solutions 6

1. Let α be a complex root of x3− 3x+ 4. Find the inverse of α2 +α+ 1 in the form
aα2 + bα + c, with a, b, c ∈ Q.

Solution : Compute directly (α2 + α + 1)(aα2 + bα + c) = 1 using the relation
α3 = 3α− 4. You should get :

(4a+ b+ c)α2 + (4b+ c− a)α + (c− 4a− 4b) = 1.

Solving the resulting linear system

4a+ b+ c = 0
4b+ c− a = 0
c− 4a− 4b = 1

yields 3b = 2c− 1 = 5a and one should find a = − 1
49

.

2. (a) Show that
√

3 6∈ Q, and
√

2 6∈ Q(
√

3).

Solution : Assume that
√

3 ∈ Q, then the polynomial x2 − 3 is well defined
over Q. Applying Eisenstein’s criterion, this polynomial is irreducible. This
is a contradiction to

√
3 ∈ Q.

Similarly, assume
√

2 ∈ Q(
√

3). Then
√

2 must have the form a + b
√

3, for
some a, b ∈ Q. It must follow that

(a+ b
√

3)2 = 2 and thus a2 + 3b2 − 2 + 2
√

3ab = 0.

Since (1,
√

3) is a linear independent set (it is a basis for Q(
√

3) as a vector
field over Q), either a = 0 or b = 0. Or, equivalently, either b is a root of
3x2 − 2 or a is a root of x2 − 2. However, both polynomials are irreducible
(you can see this with Eisenstein for instance) over Q. This is a contradiction
to a, b ∈ Q.

(b) Show that Q(
√

2,
√

3) = Q(
√

2 +
√

3).

Solution : One inclusion is trivial : Q(
√

2+
√

3) ⊆ Q(
√

2,
√

3), as
√

2+
√

3 is
contained in Q(

√
2,
√

3). To show the converse inclusion, we need to establish
that

√
2,
√

3 ∈ Q(
√

2 +
√

3). We have

(
√

2 +
√

3)2 = 5 + 2
√

6

1



hence
√

6 ∈ Q(
√

2 +
√

3). One may then write

√
2 =
√

2 +
√

3−
√

6√
2

which is equivalent to

√
2 =

2 +
√

6√
2 +
√

3
∈ Q(

√
2 +
√

3).

A similar computation works to show
√

3 ∈ Q(
√

2 +
√

3).

(c) Determine the degrees of the extensions Q(
√

3) over Q and Q(
√

2,
√

3) over
Q(
√

3).

Solution : Since x2− 3 is the irreducible polynomial for
√

3 over Q, we have
[Q(
√

3) : Q] = 2. Similarly, x2 − 2 is the irreducible polynomial for
√

2 over
Q(
√

3). Irreducibility in both cases follows from (a).

3. Let β = 3
√

2e2πi/3. Prove that x21 + · · ·+ x2k = −1, k > 1, has no solutions with all
xi ∈ Q(β).

Solution : Let α = 3
√

2. Observe that both α and β are roots of f(x) = x3− 2. In
fact, f(x) is the irreducible polynomial for both α and β over Q. We know that
in this case Q(α) and Q(β) are isomorphic (Proposition 15.2.8, Artin). Now, since
Q(α) is a subfield of R, and the polynomial x21 + · · ·+ x2k + 1 has no solution in R,
for whatever k > 1, the claim follows.

4. Let K = F (α) be a field extension generated by a transcendental element α, and
let β be an element of K that is not in F . Prove that α is algebraic over the field
F (β).

Solution : We know that if α is transcendental over F , then F (α) is isomorphic

to the field F (x) of rational functions. Let β = f(α)
g(α)

be an element in K = F (α)
but not in F . Then α is a root of t

p(x) = f(x)− βg(x) ∈ K[x].

We need to check that p is not trivially zero. The function g(x) can, by definition,
not be identically zero, that is for g(x) = bnx

n + · · · + bmx
m + . . . b0, there is a

coefficient bm 6= 0. Then

p(x) = · · ·+ (am − βbm)xm + · · ·+ (a0 − βb0) = 0

requires β = am/bm and this is not possible as we assume β 6∈ F .
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