D-MATH
Prof. Brent Doran

Solutions 7

Degree of field extension, irreducible polynomial

1. (a) Let F be a field, and let α be an element that generates a field extension of F of degree 5. Prove that α^{2} generates the same extension.

Solution : The element α generates $F(\alpha)$ with $[F(\alpha): F]=5$. Since $\alpha^{2} \in$ $F(\alpha), F\left(\alpha^{2}\right) \subset F(\alpha)$. Because $\left[F(\alpha): F\left(\alpha^{2}\right)\right]$ must divide $[F(\alpha): F]=5$ and $\alpha \notin F$, we can conclude that $F\left(\alpha^{2}\right)=F(\alpha)$.
(b) Prove the last statement for 5 replaced by any odd integer.

Solution : If $\left[F(\alpha): F\left(\alpha^{2}\right)\right]$ divides an odd integer, then it must be odd itself. The irreducible polynomial for α over $F\left(\alpha^{2}\right)$ must also divide the polynomial $x^{2}-\alpha$. Hence the degree is an odd integer that is less or equal to 2 and we can conclude that $F\left(\alpha^{2}\right)=F(\alpha)$.
2. Prove that $x^{4}+3 x+3$ is irreducible over $\mathbb{Q}[\sqrt[3]{2}]$.

Solution : Applying the Eisenstein criterium, we see that the polynomial

$$
f(x)=x^{4}+3 x+3
$$

is irreducible over Q. Let α be a root of $f(x)$. Then α defines a field extension of degree 4 over \mathbb{Q}. By coprimality of the degrees, the extension $\mathbb{Q}(\alpha, \sqrt[3]{2})$ over \mathbb{Q} has degree 12 . The irreducible polynomial for α over $\mathbb{Q}(\sqrt[3]{2})$ must have degree 4 . Hence it is $f(x)$.
3. Let $K=\mathbb{Q}(\alpha)$ where α is a root of $x^{3}-x-1$. Determine the irreducible polynomial for $1+\alpha^{2}$ over \mathbb{Q}.

Solution : We compute

$$
\left(1+\alpha^{2}\right)^{2}=3 \alpha^{2}+\alpha+1, \quad\left(1+\alpha^{2}\right)^{3}=7 \alpha^{2}+5 \alpha+2 .
$$

Getting rid of the factors α then leads to

$$
\left(1+\alpha^{2}\right)^{3}-5\left(1+\alpha^{2}\right)^{2}+8\left(1+\alpha^{2}\right)-5=0 .
$$

We conclude by showing that $f(x)=x^{3}-5 x^{2}+8 x-5$ is irreducible over \mathbb{Q}. This follows e.g. because $x^{3}+x^{2}+1$ is irreducible in $\mathbb{F}_{2}[x]$.
4. Determine the irreducible polynomials for $\alpha=\sqrt{3}+\sqrt{5}$ over the following fields

$$
\mathbb{Q}, \quad \mathbb{Q}[\sqrt{5}], \quad \mathbb{Q}[\sqrt{10}], \quad \mathbb{Q}[\sqrt{15}] .
$$

Solution : We have

$$
\alpha^{2}=8+2 \sqrt{15}, \quad\left(\alpha^{2}-8\right)^{2}=60, \quad(\alpha-\sqrt{5})^{2}=3
$$

Therefore

- $x^{4}-16 x^{2}+4$ is the irreducible polynomial for α over \mathbb{Q},
- $x^{2}-2 \sqrt{5} x+2$ is the irreducible polynomial for α over $\mathbb{Q}[\sqrt{5}]$, since there can be no monic linear polynomial in $\mathbb{Q}[\sqrt{5}]$ with root α.
- $x^{2}-8-2 \sqrt{15}$ is the irreducible polynomial for α over $\mathbb{Q}[\sqrt{15}]$ following the same argumentation as above,
- and since there are no linear or quadratic polynomial with root α over $\mathbb{Q}[\sqrt{10}]$, the irreducible polynomial is in this case also $x^{4}-16 x^{2}+4$.

5. A field extension K / F is an algebraic extension if every element of K is algebraic over F.
(a) Let L / K and K / F be algebraic extensions. Prove that L / F is an algebraic extension.

Solution : Let l be an element of L. By assumption, L / K is algebraic, so l is the root of a non-zero polynomial over K. We show that it is also the root of a non-zero polynomial with coefficients in F.
Let $f(x)=a_{n} x^{n}+\cdots+a_{0}$ be the polynomial in $K[x]$ with root l. Since we also assume that the extension K / F is algebraic, the degree $\left[F\left(a_{n}, \ldots, a_{0}\right): F\right]$ is finite. If we now consider $F^{\prime}=F\left(a_{n}, \ldots, a_{0}, l\right)$, the degree $\left[F^{\prime}: F\right]$ is finite.
(b) Let $\alpha, \beta \in \mathbb{C}$. Prove that if $\alpha+\beta$ and $\alpha \beta$ are algebraic numbers, then α and β are also algebraic numbers.

Solution : If both $\alpha+\beta$ and $\alpha \beta$ are algebraic, then the extension $K=$ $F(\alpha+\beta, \alpha \beta)$ is algebraic over F, following the definition above. We show that $F(\alpha, \beta) / K$ is algebraic and conclude with (a). For this, note that the polynomial

$$
x^{2}-(\alpha+\beta) x+\alpha \beta
$$

has coefficients in K and has both α and β as roots.

