SELECTED SOLUTIONS FOR ALGEBRAIC GEOMETRY SPRING SEMESTER 2015

Sheet 1

Exercise 2

a) $S L_{2}(\mathbb{C})$ is equal to the variety in \mathbb{A}^{4} cut out by the equation $\operatorname{det} A-1=0$, where A is a matrix in 4 indeterminates.
b) We want to show that any polynomial that vanishes at every element of $S L_{2}(\mathbb{Z})$ must also vanish at every element of $S L_{2}(\mathbb{C})$. Let $P\left(x_{11}, x_{12}, x_{21}, x_{22}\right)$ be such a polynomial. Let $\gamma \in S L_{2}(\mathbb{C})$. Then, as stated in the exercise,

$$
\gamma=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

can be written as a product of the form

$$
\gamma=\left(\begin{array}{cc}
1 & b_{1} \\
c_{1} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & b_{2} \\
c_{2} & 1
\end{array}\right)_{\ldots}\left(\begin{array}{cc}
1 & b_{k} \\
c_{k} & 1
\end{array}\right)
$$

where $b_{i}, c_{i} \in \mathbb{C}$ and for each $i=1, \ldots, k$ either c_{i} or b_{i} is zero.
WLOG, assume that

$$
\gamma=\left(\begin{array}{cc}
1 & \beta_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\beta_{2} & 1
\end{array}\right)_{\ldots}\left(\begin{array}{cc}
1 & 0 \\
\beta_{k} & 1
\end{array}\right)
$$

Thus the $a_{i j}$ are polynomials in the β_{l}, i.e. we have poylnomials $\alpha_{i j}\left(y_{1}, \ldots, y_{k}\right)$ such that $a_{i j}=\alpha_{i j}\left(\beta_{1}, \ldots, \beta_{k}\right)$.

Then $P\left(\alpha_{11}, \ldots, \alpha_{22}\right)$ is a polynomial Q in the y_{j} and, since the matrix M given by $(M)_{i j}=\alpha_{i j}(z)$ is in $S L_{2}(\mathbb{Z})$ for all $z \in \mathbb{Z}^{k}, P$ vanishes at M and so Q vanishes on \mathbb{Z}^{k}. By the same argument as $\left.1 d\right)$, such a polynomial must vanish on \mathbb{C}^{k}. In particular, $Q\left(\beta_{1}, \ldots, \beta_{k}\right)=P\left(a_{11}, \ldots, a_{22}\right)=0$.

Exercise 5
Let $\Gamma:=\left\{a_{1}, \ldots, a_{m}\right\} \subset \mathbb{A}^{n}$ be a finite set of points.
Writing $a_{i}=\left(a_{i 1}, \ldots, a_{i n}\right)$ for $i=1, \ldots, m$, we can assume WLOG that $a_{i j} \neq a_{k j}$ for $k \neq i$. Indeed, there are infinitely many lines through a single point in Γ (since k is infinite) and only finitely many whose translations to the other points in Γ contain more than one point in Γ. Choose a line l outside of this finite set. Repeating the process, noting that there are infinitely many lines not contained in a given linear subspace of \mathbb{A}^{n} of dimension strictly smaller than n, we can attain n linearly-independent such lines and use them to parameterize \mathbb{A}^{n}.

Now define

$$
L_{k}\left(x_{1}, \ldots, x_{n-1}\right):=\frac{\prod_{i=1, i \neq k}^{m}\left(x_{1}-a_{i 1}\right)}{\prod_{i=1, i \neq k}^{m}\left(a_{k 1}-a_{i 1}\right)} \cdots \frac{\prod_{i=1, i \neq k}^{m}\left(x_{n-1}-a_{i(n-1)}\right)}{\prod_{i=1, i \neq k}^{m}\left(a_{k(n-1)}-a_{i(n-1)}\right)}
$$

Date: August 2015.

Then, $L_{k}\left(a_{j}\right)=\delta_{k}^{j}$ and writing x for $\left(x_{1}, \ldots, x_{n-1}\right)$ and defining

$$
p(x):=a_{1 n} L_{1}(x)+\ldots+a_{m n} L_{k}(x)
$$

we see that $p\left(a_{i 1}, \ldots, a_{i n-1}\right)=a_{i n}$ for $i=1, \ldots, m$. This implies that the variety $Y \subset \mathbb{A}^{n}$ defined by

$$
Q\left(x_{1}, \ldots, x_{n}\right):=p(x)-x_{n}
$$

contains Γ.
We proceed by induction. In the case $n=1$, we simply take the product of $\left(x-a_{i}\right)$ where a_{i} runs over all the points in Γ.

Now suppose $n>1$ and that any finite set of points in \mathbb{A}^{n-1} can be written as the zero locus of $n-1$ polynomials. Consider the projection map $\pi: \mathbb{A}^{n} \rightarrow \mathbb{A}^{n-1}$ sending $\left(y_{1}, \ldots, y_{n}\right) \rightarrow\left(y_{1}, \ldots, y_{n-1}\right)$. By assumption there exist polynomials q_{1}, \ldots, q_{n-1} in x_{1}, \ldots, x_{n-1} such that $V_{\mathbb{A}^{n-1}}\left(q_{1}, \ldots, q_{n-1}\right)=\pi(\Gamma)$.

Then $V:=\pi^{-1}(\pi(\Gamma))=V_{\mathbb{A}^{n}}\left(q_{1}, \ldots, q_{n-1}\right)$ consists precisely of the lines of the form $l_{i}=\left(a_{i 1}, \ldots, a_{i(n-1)}, X\right)$, with $i=1, \ldots, m$ and X runs through k. Now, with Q as above, $\Gamma \subset V(Q)$ and Q cannot vanish anywhere else on the lines l_{i} since, writing $a_{i}=\left(a_{i 1}, \ldots, a_{i(n-1)}\right)$, if Q vanishes on $\left(a_{i}, \lambda\right)$ and $\left(a_{i}, \lambda^{\prime}\right)$, with $\lambda \neq \lambda^{\prime}$, then $p\left(a_{i}\right)=\lambda$ and $p\left(a_{i}\right)=\lambda^{\prime}$, which is impossible. Therefore $V \cap V(Q)=$ $V\left(q_{1}, \ldots, q_{n-1}, Q\right)=\Gamma$

Sheet 4

Exercise 4

Let Γ be a finite subset of \mathbb{P}^{n} in general position of cardinality $|\Gamma|=d \leq 2 n$.
Recall that a finite set of points in \mathbb{P}^{n} is in general position if the liftings of any m points to lines in \mathbb{A}^{n+1}, where $0 \leq m \leq n+1$, via the quotient map $\pi: \mathbb{A}^{n}-\{0\} \rightarrow \mathbb{P}^{n}$ generates a linear subspace of dimension m. We say that the points span an m-1-dimensional linear subspace of \mathbb{P}^{n}.

See Harris, Algebraic Geometry, Theorem 1.4 for the proof in the case $d=2 n$. We will assume in the following that this case is proven and proceed by induction.

Suppose $1 \leq d<2 n$ and that any collection of $d+1$ points in general position can be described as the zero locus of quadratic polynomials.

We claim that there exists a point $p^{\prime} \in \mathbb{P}^{n}$ not contained in Γ such that the set $\Gamma^{\prime}=\Gamma \cup\left\{p^{\prime}\right\}$ is in general position. Indeed, if $d<n+1$ we simply choose any point not contained in the linear subspace of \mathbb{P}^{n} generated by Γ. Otherwise, we must find a point p^{\prime} such that the linear subspace generated by p^{\prime} and any n points in Γ has dimension n. Since only $\binom{d}{n}$ hyperplanes can be spanned by n points in Γ, and there are infinitely many points not contained in the union of these hyperplanes, such a p^{\prime} must exist.

By assumption the set $\Gamma^{\prime}=V\left(Q_{1}, \ldots, Q_{k}\right)$ where the Q_{i} are quadratic polynomials. Choose $S_{1}, S_{2} \subset \Gamma$ with $\left|S_{i}\right| \leq n$ and $\Gamma=S_{1} \cup S_{2}$. Then the linear subspaces Λ_{i} spanned by the S_{i} are the zero locii of linear forms and since Γ^{\prime} is in general position, $p^{\prime} \notin \Lambda_{1} \cup \Lambda_{2}$. Since $\Gamma \subset \Lambda_{1} \cup \Lambda_{2}$, which is also described by quadratics P_{1}, \ldots, P_{j}, we have $\Gamma=\Gamma^{\prime} \cap\left(\Lambda_{1} \cup \Lambda_{2}\right)=V\left(Q_{1}, . ., Q_{k}, P_{1}, \ldots, P_{j}\right)$.

