Sheet 11

Unless stated otherwise we work over an algebraically closed field k.

1. Let C be a smooth projective curve and D a divisor on C. Show
a) The assignment $f \mapsto \operatorname{div} f+D$ induces a bijection between $(\mathcal{L}(D) \backslash\{0\}) / k^{\times}$and the set of effective divisors whose image in $\operatorname{Pic}(C)$ coincides with that of D.
b) $\mathcal{L}(D) \neq 0$ implies $\operatorname{deg} D \geq 0$.
c) Assume $\operatorname{deg} D=0$. Then $\mathcal{L}(D) \neq 0$ holds if and only if $D=0$ holds in $\operatorname{Pic}(C)$.
2. Let $F \in k[x, y]$ be a cubic polynomial. If $F=y^{2}-x^{3}-a x^{2}-b x-c$ for some $a, b, c \in k$ we say that F has Weierstrass normal form. Show that if char $k \notin\{2,3\}$, then $x=\frac{12 c}{u+v}$ and $y=36 c \frac{u-v}{u+v}$ define a birational equivalence between $V\left(u^{3}+v^{3}-c\right) \subseteq \mathbb{A}^{2}$ and $V\left(y^{2}-x^{3}+432 c^{2}\right) \subseteq \mathbb{A}^{2}$.

Remark: If char $k \neq 2$, any $V(F) \subseteq \mathbb{A}^{2}$ can be shown to be birationally equivalent to a $V(\widetilde{F})$, where \widetilde{F} has Weierstrass normal form.
3. Let char $k \neq 2$. Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ be points in $V(F) \subseteq \mathbb{A}^{2}$, where $F=y^{2}-x^{3}-a x^{2}-b x-c$ is such that $V(F)$ is smooth. Show that $P_{1} \oplus P_{2}=\left(x_{3},-y_{3}\right)$ is given by
a)

$$
x_{3}=\lambda^{2}-a-x_{1}-x_{2} \quad y_{3}=\lambda x_{3}+\nu \quad \lambda:=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \nu:=y_{1}-\lambda x_{1}=y_{2}-\lambda x_{2}
$$

if P_{1} and P_{2} do not lie on a vertical line in \mathbb{A}^{2}.
b) by the formula of a with $\lambda=\frac{3 x_{1}^{2}+2 a x_{1}+b}{2 y_{1}}$ if $P_{1}=P_{2}$ does not lie on the x-axis.
c) What happens if P_{1} and P_{2} are on a vertical line or $P_{1}=P_{2}$ lie on the x-axis?
4. Let char $k \notin\{2,3\}$. Let $C=\overline{V(F)} \subseteq \mathbb{P}^{2}$ be nonsingular, where $F=y^{2}-x^{3}-a x^{2}-$ $b x-c$. Show that C has exactly nine points P of order dividing three, i.e. satisfying $P \oplus P \oplus P=0$, and that they form a subgroup of C isomorphic to $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$. Show that these nine points are the inflection points of C, i.e. for each P there is a line $V(\lambda)$ such that $v_{P}(\lambda)=3$.

Due on Friday, May 29.

