Sheet 2

Unless stated otherwise k denotes an algebraically closed field.

1. Exercise 3 in the lecture notes.
2. Let $Y \subseteq \mathbb{A}^{n}$ be an affine variety. Show
a) If $Y=Y_{1} \sqcup Y_{2}$ (disjoint union), where Y_{1} and Y_{2} are nonempty affine varieties, then $A(Y) \cong A\left(Y_{1}\right) \times A\left(Y_{2}\right)$ as k-algebras, where \times is the product of k-algebras.
b) Y is connected if and only if $f^{2}=f$ in $A(Y)$ implies $f \in\{0,1\}$.

Definition: A topological space X is connected if $X=X_{1} \sqcup X_{2}$, where X_{1} and X_{2} are closed (equivalently open) subsets, implies X_{1} or X_{2} is X.
3. Consider the subspaces Y of \mathbb{A}^{2} given in sheet 1 , exercise 1. Determine
a) whether \bar{Y} is connected.
b) the irreducible components of \bar{Y}.

Remark: A topological space X is irreducible if $X=X_{1} \cup X_{2}$, where X_{1} and X_{2} are distinct closed subsets of X, implies X_{1} or X_{2} is X. According to Hartshorne, Proposition I.1.5, there is a unique decomposition $X=\bar{Y}=\bigcup_{j=1}^{r} X_{j}$ of X into finitely many irreducible subspaces X_{j} such that $X_{i} \nsubseteq X_{j}$ for all $i \neq j$. The X_{j} are the irreducible components of X.
4. Exercise 7 in the lecture notes.
5. (Products of Affine Varieties, Hartshorne Exercise I.3.15) Let $X \subseteq \mathbb{A}^{n}$ and $Y \subseteq \mathbb{A}^{m}$ be affine varieties. Show
a) that if X and Y are irreducible, then $X \times Y \subseteq \mathbb{A}^{n+m}$ with its induced topology is irreducible. The affine variety $X \times Y$ is called the product of X and Y. Note that its topology is in general not equal to the product topology.

Hint: Suppose that $X \times Y$ is a union of two closed subsets $Z_{1} \cup Z_{2}$. Let $X_{i}=$ $\left\{x \in X \mid x \times Y \subseteq Z_{i}\right\}, i=1,2$. Show that $X=X_{1} \cup X_{2}$ and X_{1}, X_{2} are closed. Then $X=X_{1}$ or X_{2} so $X \times Y=Z_{1}$ or Z_{2}.
b) $A(X \times Y) \cong A(X) \otimes_{\mathrm{k}} A(Y)$ as k-algebras
c) $X \times Y$ is a product in the category of varieties, i.e.

1. the projections $X \times Y \rightarrow X$ and $X \times Y \rightarrow Y$ are morphisms.
2. given a variety Z and the morphisms $Z \rightarrow X, Z \rightarrow Y$, there is a unique morphism $Z \rightarrow X \times Y$ such that the diagram

commutes.
3. Exercise 12 in the lecture notes.
4. Exercise 13 in the lecture notes.

Due on Friday, March 6.

