Algebraic Geometry

Sheet 2

Unless stated otherwise k denotes an algebraically closed field.

- 1. Exercise 3 in the lecture notes.
- **2.** Let $Y \subseteq \mathbb{A}^n$ be an affine variety. Show
 - a) If $Y = Y_1 \sqcup Y_2$ (disjoint union), where Y_1 and Y_2 are nonempty affine varieties, then $A(Y) \cong A(Y_1) \times A(Y_2)$ as k-algebras, where \times is the product of k-algebras.
 - **b)** Y is connected if and only if $f^2 = f$ in A(Y) implies $f \in \{0, 1\}$.

Definition: A topological space X is connected if $X = X_1 \sqcup X_2$, where X_1 and X_2 are closed (equivalently open) subsets, implies X_1 or X_2 is X.

- **3.** Consider the subspaces Y of \mathbb{A}^2 given in sheet 1, exercise **1**. Determine
 - **a)** whether \overline{Y} is connected.
 - **b**) the irreducible components of \overline{Y} .

Remark: A topological space X is *irreducible* if $X = X_1 \cup X_2$, where X_1 and X_2 are distinct closed subsets of X, implies X_1 or X_2 is X. According to Hartshorne, Proposition I.1.5, there is a unique decomposition $X = \overline{Y} = \bigcup_{j=1}^r X_j$ of X into finitely many irreducible subspaces X_j such that $X_i \notin X_j$ for all $i \neq j$. The X_j are the *irreducible components* of X.

4. Exercise 7 in the lecture notes.

- **5.** (*Products of Affine Varieties*, Hartshorne Exercise I.3.15) Let $X \subseteq \mathbb{A}^n$ and $Y \subseteq \mathbb{A}^m$ be affine varieties. Show
 - a) that if X and Y are irreducible, then $X \times Y \subseteq \mathbb{A}^{n+m}$ with its induced topology is irreducible. The affine variety $X \times Y$ is called the *product* of X and Y. Note that its topology is in general not equal to the product topology.

Hint: Suppose that $X \times Y$ is a union of two closed subsets $Z_1 \cup Z_2$. Let $X_i = \{x \in X \mid x \times Y \subseteq Z_i\}$, i = 1, 2. Show that $X = X_1 \cup X_2$ and X_1, X_2 are closed. Then $X = X_1$ or X_2 so $X \times Y = Z_1$ or Z_2 .

- **b)** $A(X \times Y) \cong A(X) \otimes_{\mathbf{k}} A(Y)$ as k-algebras
- c) $X \times Y$ is a product in the category of varieties, i.e.
 - 1. the projections $X \times Y \to X$ and $X \times Y \to Y$ are morphisms.
 - 2. given a variety Z and the morphisms $Z \to X, Z \to Y$, there is a unique morphism $Z \to X \times Y$ such that the diagram

commutes.

- **6.** Exercise 12 in the lecture notes.
- 7. Exercise 13 in the lecture notes.

Due on Friday, March 6.