Sheet 4

In the following exercises we always work over an algebraically closed field.

1. Let X be the projective variety $V\left(x_{0} x_{2}^{2}-x_{1}^{3}+x_{0}^{2} x_{1}\right) \subset \mathbb{P}^{2}$. For each $i \in\{0,1,2\}$, compute the affine variety $X_{i} \subset \mathbb{P}_{i}^{2} \cong \mathbb{A}^{2}$ (notation as in lecture) obtained by dehomogenizing.
2. (d-uple or Veronese embedding, cf. Hartshorne Exercise I.2.12) Let $n, d \in \mathbb{Z}_{>0}$. Consider the monomials of degree d in the $n+1$ variables x_{0}, \ldots, x_{n}, i.e. elements of the form $x^{i}:=x_{0}^{i_{0}} \ldots x_{n}^{i_{n}}$ where $i \in \mathbb{Z}_{\geq 0}^{n+1}$ is a multi-index such that $i_{0}+\cdots+i_{n}=d$. We define $\nu_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$ by $\left[x_{0}, \ldots, x_{n}\right] \mapsto\left[\left(x^{i}\right)_{i}\right]$ called d-uple or Veronese embedding of \mathbb{P}^{n} in \mathbb{P}^{N}. For example, if $n=1, d=2$, then $N=2$, and the image of the 2 -uple embedding of \mathbb{P}^{1} in \mathbb{P}^{2} is a conic. Show
a) $N=\binom{n+d}{n}-1$
b) Let $\theta: k\left[\left(y_{i}\right)_{i}\right] \rightarrow k\left[x_{0}, \ldots, x_{n}\right]$ be the homomorphism defined by sending $y_{i} \mapsto x^{i}$ and let \mathfrak{a} be the kernel of θ. Then \mathfrak{a} is a homogeneous prime ideal and so $V(\mathfrak{a})$ is an irreducible projective variety in \mathbb{P}^{N}.
c) The image of ν_{d} is $V(\mathfrak{a})$.
d) ν_{d} is a homeomorphism of \mathbb{P}^{n} onto $V(\mathfrak{a})$.
e) * The ideal \mathfrak{a} is generated by

$$
y_{i} y_{j}-y_{k} y_{l} \quad i+j=k+l .
$$

3. (Harris Exercise 1.3) Let Γ be a finite subset of \mathbb{P}^{n} of cardinality $|\Gamma|=d$. Show that if Γ is not contained in a line in \mathbb{P}^{n}, i.e. a set $V\left(f_{1}, \ldots, f_{n-1}\right)$, where $f_{j} \in k\left[x_{0}, \ldots, x_{n}\right]_{1}$ are linearly independent, then Γ may be described as the zero locus of polynomials of degree $d-1$ or less.

Hint: Induction on d. The induction start is $d=3$.
4. * (Harris Example 1.2) Let Γ be a finite subset of \mathbb{P}^{n} of cardinality $|\Gamma|=d$. We say that Γ is in general position if any subset of Γ whose lift to \mathbb{A}^{n+1} is linearly dependent has cardinality $>n+1$. (If $d \geq n+1$ this is the same as saying that the lift of any $n+1$ points of Γ do not lie in a hyperplane in \mathbb{A}^{n+1}.) Show that if $d \leq 2 n$ and Γ is in general position, then Γ may be described as the zero set of quadratic polynomials.

Hint: Read the proof for $d=2 n$ in Harris.
5. (Rational normal curve) The image of $\nu_{d}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{d}$ composed with an element of the projective linear group $\mathrm{PGL}_{d+1}(k)$ is called a rational normal curve C. In the special case $d=3$ it is called twisted cubic curve. Show
a) Any $d+1$ distinct points on C are in general position.

Hint: Vandermonde determinant
b) (Harris Example 1.17) Let $\left[\mu_{i}, \nu_{i}\right] \in \mathbb{P}^{1}, 1 \leq i \leq d+1$, be $d+1$ distinct points. Set $H_{i}\left(x_{0}, x_{1}\right)=\prod_{j \neq i}\left(\mu_{j} x_{0}-\nu_{j} x_{1}\right)$. Then $\left[x_{0}, x_{1}\right] \mapsto\left[\left(H_{i}\left(x_{0}, x_{1}\right)\right)_{1 \leq i \leq d+1}\right]$ is a parametrization of a rational normal curve sending $\left[\nu_{i}, \mu_{i}\right]$ to the image of the i th standard basis vector in \mathbb{P}^{d}.
c) (Harris Theorem 1.18) If Γ is a subset in \mathbb{P}^{d} of cardinality $d+3$ and in general position, there is a unique rational normal normal curve passing through Γ.

Hint: For the existence determine the image of $[0,1]$ and $[1,0]$ in the parametrization in \mathbf{b}.
6. (Projection from a point, Harris Example 3.4) Let $\mathbb{P}^{n-1} \subseteq \mathbb{P}^{n}$ be a hyperplane and $p \in \mathbb{P}^{n}-\mathbb{P}^{n-1}$. Define

$$
\pi_{p}: \mathbb{P}^{n}-\{p\} \rightarrow \mathbb{P}^{n-1}, q \mapsto \mathbb{P}^{n-1} \cap \text { line through } p \text { and } q
$$

and call it projection from the point p to the hyperplane \mathbb{P}^{n-1}. We can choose homogeneous coordinates on \mathbb{P}^{n} such that π_{p} is given by $\left[x_{0}, \ldots, x_{n}\right] \mapsto\left[x_{0}, \ldots, x_{n-1}\right]$.
a) Verify that π_{p} is a morphism.
b) Set $n=3$. Find the equations of $\pi_{p}(C)$ for C the twisted cubic and $p=[1,0,0,1]$ and $p=[0,1,0,0]$.
c) Show that if C is a rational normal curve in \mathbb{P}^{n} and $p \in C$, then $\overline{\pi_{p}(C-p)}$ is a rational normal curve in \mathbb{P}^{n-1}.

