Prof. Dr. P. Nelson D-MATH Algebraic Geometry

Sheet 5

Unless stated otherwise we work over an algebraically closed field k.

- **1.** The affine Veronese surface $S \subseteq \mathbb{A}^5$ is the image of $\varphi : \mathbb{A}^2 \to \mathbb{A}^5$ given by $\varphi(x_1, x_2) = (x_1, x_2, x_1^2, x_1 x_2, x_2^2)$. The projective closure $\overline{S} \subseteq \mathbb{P}^5$ is known as the projective Veronese surface.
 - a) Find a set of homogeneous equations for \overline{S} .

Hint: E.g. you can determine a Gröbner basis for I(S) using the Buchberger algorithm.

- b) Show that the parametrization of the affine Veronese surface above can be extended to a morphism $\mathbb{P}^2 \to \mathbb{P}^5$ whose image coincides with \overline{S} .
- **2.** Let $X \subseteq \mathbb{P}^n$ be a projective variety that is not a finite collection of points. Let $g \in k[x_0, \ldots, x_n]_d$ for some d > 0. Prove that $V(g) \cap X \neq \emptyset$.

Hint: Either assume $V(g) \cap X = \emptyset$ and construct a nonconstant regular function on some connected component of X or use the Veronese embedding ν_d of sheet 4, exercise **2**.

- **3.** Prove that every rational map $\mathbb{P}^1 \dashrightarrow \mathbb{P}^n$ is regular.
- **4.** (Harris Exercise 7.13) Give an explicit birational equivalence of $\mathbb{P}^m \times \mathbb{P}^n$ with \mathbb{P}^{m+n} .
- 5. (Harris Exercise 7.14) Let $Q \subseteq \mathbb{P}^n$ be a quadric, i.e. the zero locus of a homogeneous polynomial of degree two. Let $p \in Q$ be any point not lying on the vertex of Q. Show that the projection π_p from the point p defined in sheet 4, exercise 6, defines a birational equivalence $Q \dashrightarrow \mathbb{P}^{n-1}$.

- **6.** (Hartshorne Exercise I.4.4) A variety Y is rational if it is birationally equivalent to \mathbb{P}^n for some n. Show
 - **a)** Any conic in \mathbb{P}^2 is a rational curve.
 - **b)** The cuspidal cubic $y^2 = x^3$ is a rational curve.
 - c) Let Y be the nodal cubic curve $x_1^2 x_2 = x_0^2(x_0 + x_2)$ in \mathbb{P}^2 . The projection π_p from the point p = [0, 0, 1] to the line $x_2 = 0$ induces a birational map from Y to \mathbb{P}^1 . Thus Y is a rational curve.

Due on Thursday, April 2.