Sheet 5

Unless stated otherwise we work over an algebraically closed field k.

1. The affine Veronese surface $S \subseteq \mathbb{A}^{5}$ is the image of $\varphi: \mathbb{A}^{2} \rightarrow \mathbb{A}^{5}$ given by $\varphi\left(x_{1}, x_{2}\right)=$ $\left(x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)$. The projective closure $\bar{S} \subseteq \mathbb{P}^{5}$ is known as the projective Veronese surface.
a) Find a set of homogeneous equations for \bar{S}.

Hint: E.g. you can determine a Gröbner basis for $I(S)$ using the Buchberger algorithm.
b) Show that the parametrization of the affine Veronese surface above can be extended to a morphism $\mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$ whose image coincides with \bar{S}.
2. Let $X \subseteq \mathbb{P}^{n}$ be a projective variety that is not a finite collection of points. Let $g \in k\left[x_{0}, \ldots, x_{n}\right]_{d}$ for some $d>0$. Prove that $V(g) \cap X \neq \varnothing$.

Hint: Either assume $V(g) \cap X=\varnothing$ and construct a nonconstant regular function on some connected component of X or use the Veronese embedding ν_{d} of sheet 4 , exercise 2.
3. Prove that every rational map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ is regular.
4. (Harris Exercise 7.13) Give an explicit birational equivalence of $\mathbb{P}^{m} \times \mathbb{P}^{n}$ with \mathbb{P}^{m+n}.
5. (Harris Exercise 7.14) Let $Q \subseteq \mathbb{P}^{n}$ be a quadric, i.e. the zero locus of a homogeneous polynomial of degree two. Let $p \in Q$ be any point not lying on the vertex of Q. Show that the projection π_{p} from the point p defined in sheet 4 , exercise $\mathbf{6}$, defines a birational equivalence $Q \xrightarrow{ }$ P ${ }^{n-1}$.
6. (Hartshorne Exercise I.4.4) A variety Y is rational if it is birationally equivalent to \mathbb{P}^{n} for some n. Show
a) Any conic in \mathbb{P}^{2} is a rational curve.
b) The cuspidal cubic $y^{2}=x^{3}$ is a rational curve.
c) Let Y be the nodal cubic curve $x_{1}^{2} x_{2}=x_{0}^{2}\left(x_{0}+x_{2}\right)$ in \mathbb{P}^{2}. The projection π_{p} from the point $p=[0,0,1]$ to the line $x_{2}=0$ induces a birational map from Y to \mathbb{P}^{1}. Thus Y is a rational curve.

Due on Thursday, April 2.

