Prof. Dr. P. Nelson D-MATH Algebraic Geometry

Sheet 6

Unless stated otherwise we work over an algebraically closed field k.

- 1. Let $p, q \ge 2$ be coprime integers. Compute the proper transform of the curve $x^p + y^q = 0$ in \mathbb{A}^2 under the blowup map $\widetilde{\mathbb{A}^2} = \mathrm{Bl}_0 \mathbb{A}^2 \to \mathbb{A}^2$. This will show that for every $k \ge 1$ there exist curves which are singular after iteratively blowing up k times the singular points.
- 2. (Harris Exercise 7.27) Consider the projection of a quadric hypersurface $Q \subseteq \mathbb{P}^n$ from a point $p \in Q$. Assume that the quadratic form has full rank. Describe the birational isomorphism $Q \dashrightarrow \mathbb{P}^{n-1}$ (sheet 5, exercise 5) in terms of blowing up and blowing down.
- **3.** (Harris Exercise 7.28) Consider the birational equivalence

 $\mathbb{P}^m \times \mathbb{P}^n \dashrightarrow \mathbb{P}^{m+n}, ([z_0, \ldots, z_m], [w_0, \ldots, w_n]) \mapsto [z_0 w_0, z_1 w_0, \ldots, z_m w_0, z_0 w_1, \ldots, z_0 w_n].$

Describe the graph of this map and describe the map in terms of blowing up and down.

- **4.** (Standard quadratic transformation I, Hartshorne Exercise I.4.6) The standard quadratic transformation is the rational map $\varphi : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$, $[a_0, a_1, a_2] \mapsto [a_1a_2, a_0a_2, a_0a_1]$.
 - a) Show that φ is birational, and is its own inverse.
 - **b)** Find open sets $U, V \subseteq \mathbb{P}^2$ such that $\varphi : U \to V$ is an isomorphism.
 - c) Find the open sets where φ and φ^{-1} are defined, and describe the corresponding morphisms.
- 5. (Standard quadratic transformation II) Show that the standard quadratic transformation φ from the previous exercise extends to an isomorphism from $Bl_{\{[1,0,0],[0,1,0],[0,0,1]\}} \mathbb{P}^2$ to itself.

Due on Friday, April 17.