Prof. Dr. P. Nelson D-MATH Algebraic Geometry

Sheet 7

- **1.** (Convex polyhedral cones and their duals) Let V be a finite-dimensional \mathbb{R} -vector space and L be a lattice in V. We call a subset $\sigma \subseteq V$ a (convex polyhedral) cone in (V, L)if there are $v_j \in L$ such that $\sigma = \sigma(v_1, \ldots, v_N) = \sum_{j=1}^N \mathbb{R}_{\geq 0} v_j$. The dimension dim σ of σ is defined as dim span $_{1 \leq j \leq N} v_j$. Consider a cone σ in $(\mathbb{R}^d, \mathbb{Z}^d)$.
 - a) Show that $\sigma^* := \{ u \in \mathbb{R}^{d*} \mid u(v) \ge 0 \ \forall v \in \sigma \}$ is a cone in $(\mathbb{R}^{d*}, \mathbb{Z}^{d*})$ called the dual of σ .
 - b) σ is called *strongly convex* if it does not contain a line through the origin. Show that this is equivalent to each of the following
 - 1. $\sigma \cap (-\sigma) = \{0\}$
 - 2. dim $\sigma^* = d$
 - 3. $\{0\}$ is a face of σ .
 - c) Show that the set $S_{\sigma} := \sigma^* \cap \mathbb{Z}^{d*}$ is a *submonoid* of $(\mathbb{Z}^{d*}, +)$, i.e. is closed under +, and contains 0.
 - d) Show that the monoid S_{σ} is finitely generated.
 - e) A face of σ is a set of the form $\tau = \{v \in \sigma \mid u(v) = 0\} = \sigma \cap u^{\perp}$ for some $u \in S_{\sigma}$. Then τ is again a cone in $(\mathbb{R}^d, \mathbb{Z}^d)$. Show $S_{\tau} = S_{\sigma} + \mathbb{Z}_{\geq 0}(-u)$.
 - **f)** * Let σ' be another cone in $(\mathbb{R}^d, \mathbb{Z}^d)$ such that $\tau := \sigma \cap \sigma'$ is a face of σ and σ' . Show that there is a $u \in \sigma^* \cap (-\sigma')^* \cap \mathbb{Z}^{d*}$ with $\tau = \sigma \cap u^{\perp} = \sigma' \cap u^{\perp}$. Conclude $S_{\tau} = S_{\sigma} + S_{\sigma'}$.

For the remaining exercises σ will denote a cone in $(\mathbb{R}^d, \mathbb{Z}^d)$ that is assumed to be strongly convex.

2. (Affine toric variety from a cone) Show

a) Set
$$\mathbb{C}[x, x^{-1}] := \mathbb{C}[x_1, \dots, x_d, x_1^{-1}, \dots, x_d^{-1}]$$
 and

$$A_{\sigma} := \mathbb{C}[S_{\sigma}] := \left\{ \sum_{\text{finite}} c_u x^u \in \mathbb{C}[x, x^{-1}] \mid c_u \in \mathbb{C}, u \in S_{\sigma} \right\},$$

where $x^u := x_1^{u(e_1)} \dots x_d^{u(e_d)}$. Here e_1, \dots, e_d denote the standard basis of the lattice \mathbb{Z}^d in \mathbb{R}^d . Then A_{σ} is an integral domain and a finitely generated \mathbb{C} -algebra generated by monomials. We call $X_{\sigma} := \operatorname{Specm} A_{\sigma}$ the *(affine) toric variety associated to* σ .

- b) Hom_{monoid} (S_{σ}, \mathbb{C}) , where \mathbb{C} is considered as a monoid under multiplication, is naturally in bijection with X_{σ} .
- c) Let $\tau = \sigma \cap u^{\perp}$ be a face of σ . Then A_{τ} identifies naturally with the localization $(A_{\sigma})_{x^{u}}$. Consequently we obtain an open embedding $\iota_{\tau,\sigma} : X_{\tau} \hookrightarrow X_{\sigma}$.
- **d)** * Let u_1, \ldots, u_k be generators of S_{σ} . To the relations $\sum_{j=1}^k \mu_j u_j = \sum_{j=1}^k \nu_j u_j$ in S_{σ} , where $\mu_j, \nu_j \ge 0$, we associate the ideal I_{σ} generated by $\xi^{\mu} \xi^{\nu}$ in $\mathbb{C}[\xi] = \mathbb{C}[\xi_1, \ldots, \xi_k]$. Then the assignment $\xi_j \mapsto x^{u_j}$ induces an isomorphism $X_{\sigma} \xrightarrow{\cong} V(I_{\sigma})$.
- **3.** Determine σ^* , generators of S_{σ} and I_{σ} and $V(I_{\sigma})$ in each of the following cases.
 - a) $\sigma = \{0\}$ in $(\mathbb{R}^d, \mathbb{Z}^d)$
 - **b**) $\sigma = \sigma(v_1, v_2)$ in $(\mathbb{R}^2, \mathbb{Z}^2)$, where (v_1, v_2) is any basis of the lattice \mathbb{Z}^2 .
 - c) $\sigma = \sigma(e_1)$ in $(\mathbb{R}^2, \mathbb{Z}^2)$
 - **d**) $\sigma = \sigma(2e_1 e_2, e_2)$ in $(\mathbb{R}^2, \mathbb{Z}^2)$.
- 4. (Torus action on an affine toric variety) Show
 - a) The *d*-dimensional torus

$$\mathbb{T}^d := X_{\{0\}} = \operatorname{Specm} \mathbb{C}[\mathbb{Z}^{d*}] = \operatorname{Specm} \mathbb{C}[x, x^{-1}] = (\mathbb{C}^{\times})^d$$

is an affine group variety, i.e. \mathbb{T}^d is a group and multiplication $m : \mathbb{T}^d \times \mathbb{T}^d \to \mathbb{T}^d$ and inverse map $I : \mathbb{T}^d \to \mathbb{T}^d$ are morphisms. In fact $m^{\sharp} : \mathbb{C}[x, x^{-1}] \to \mathbb{C}[x, x^{-1}] \otimes_{\mathbb{C}} \mathbb{C}[x, x^{-1}]$ is given by $f \mapsto f \otimes f$.

b) Under the identification $X_{\sigma} \cong \operatorname{Hom}_{\operatorname{monoid}}(S_{\sigma}, \mathbb{C})$

ac :
$$\mathbb{T}^d \times X_\sigma \to X_\sigma$$
, $(s,t) \mapsto (u \mapsto s(u)t(u))$,

defines an *action* of \mathbb{T}^d on X_σ , i.e. ac satisfies

$$\operatorname{ac}(1,\alpha) = \alpha$$
, $\operatorname{ac}(st,\alpha) = \operatorname{ac}(s,\operatorname{ac}(t,\alpha))$

and ac is a morphism. In fact $\operatorname{ac}^{\sharp} : A_{\sigma} \to \mathbb{C}[x, x^{-1}] \otimes_{\mathbb{C}} A_{\sigma}$ is given by $f \mapsto f \otimes f$. Thus $\iota_{\{0\},\sigma} : \mathbb{T}^d \hookrightarrow X_{\sigma}$ respects the \mathbb{T}^d -action if we let \mathbb{T}^d act on itself by multiplication. Also note dim $X_{\sigma} = d$.

- c) * Formulate the action of \mathbb{T}^d on $V(I_{\sigma})$.
- d) * Check in the examples of **3** that the orbits of the \mathbb{T}^d -action on X_{σ} are naturally in bijection with the faces of σ . Which faces correspond to \mathbb{T}^d -fixed points?
- **5.** (Smoothness of X_{σ} in terms of σ) Show

- a) If $v_1, \ldots, v_N \in \mathbb{Z}^d$ are part of a \mathbb{Z} -basis of \mathbb{Z}^d , then the toric variety of the cone $\sigma = \sigma(v_1, \ldots, v_N)$ is $X_{\sigma} \cong \mathbb{A}^N \times \mathbb{T}^{d-N}$. In particular X_{σ} is smooth.
- **b)** * If X_{σ} is smooth, then $\sigma = \sigma(v_1, \ldots, v_N)$ for some v_1, \ldots, v_N that are part of a \mathbb{Z} -basis of \mathbb{Z}^d .

Hint: Consider the cotangent space $\mathfrak{m}_{x_{\sigma}}/\mathfrak{m}_{x_{\sigma}}^2$ at the point $x_{\sigma} \in X_{\sigma}$ defined by the monoid homomorphism $S_{\sigma} \to \mathbb{C}$ given by

$$u \mapsto \begin{cases} 1 & u \in \sigma^{\perp} \\ 0 & \text{else} \end{cases}$$

- 6. * (Toric variety from a fan) Let Δ be a fan, i.e. a finite collection of cones such that
 - 1. Each face of a cone in Δ is again a cone in Δ .
 - 2. The intersection of two cones in Δ is a face of each.

Show

a) Let X_{Δ} be the prevariety glued from the X_{σ} via the open embeddings $\iota_{\sigma\cap\sigma',\sigma}$: $X_{\sigma\cap\sigma'} \hookrightarrow X_{\sigma}$ and $\iota_{\sigma\cap\sigma',\sigma'} : X_{\sigma\cap\sigma'} \hookrightarrow X_{\sigma'}$ for $\sigma, \sigma' \in \Delta$. The diagonal map $X_{\sigma\cap\sigma'} \to X_{\sigma} \times X_{\sigma'}$ is a closed embedding and consequently X_{Δ} is separated. We call X_{Δ} the toric variety associated to Δ .

Remark: We may take Δ to consist of all the faces of a single cone σ , in which case $X_{\Delta} = X_{\sigma}$ holds. Using exercise **4** one can show that there is a \mathbb{T}^d -action on X_{Δ} and an open dense embedding $\mathbb{T}^d \hookrightarrow X_{\Delta}$ respecting the \mathbb{T}^d -action.

b) Find a fan Δ such that $X_{\Delta} \cong \mathbb{A}^1, \mathbb{P}^1, \mathbb{A}^1 \times \mathbb{P}^1, \mathbb{P}^1 \times \mathbb{P}^1$ and \mathbb{P}^2 respectively. Describe the cones $\sigma \in \Delta$ and the corresponding A_{σ} .

Due on Friday, April 24.