Sheet 7

1. (Convex polyhedral cones and their duals) Let V be a finite-dimensional \mathbb{R}-vector space and L be a lattice in V. We call a subset $\sigma \subseteq V$ a (convex polyhedral) cone in (V, L) if there are $v_{j} \in L$ such that $\sigma=\sigma\left(v_{1}, \ldots, v_{N}\right)=\sum_{j=1}^{N} \mathbb{R}_{\geq 0} v_{j}$. The dimension $\operatorname{dim} \sigma$ of σ is defined as dim $\operatorname{span}_{1 \leq j \leq N} v_{j}$. Consider a cone σ in $\left(\mathbb{R}^{d}, \mathbb{Z}^{d}\right)$.
a) Show that $\sigma^{*}:=\left\{u \in \mathbb{R}^{d *} \mid u(v) \geq 0 \forall v \in \sigma\right\}$ is a cone in $\left(\mathbb{R}^{d *}, \mathbb{Z}^{d *}\right)$ called the dual of σ.
b) σ is called strongly convex if it does not contain a line through the origin. Show that this is equivalent to each of the following
2. $\sigma \cap(-\sigma)=\{0\}$
3. $\operatorname{dim} \sigma^{*}=d$
4. $\{0\}$ is a face of σ.
c) Show that the set $S_{\sigma}:=\sigma^{*} \cap \mathbb{Z}^{d *}$ is a submonoid of $\left(\mathbb{Z}^{d *},+\right)$, i.e. is closed under + , and contains 0 .
d) Show that the monoid S_{σ} is finitely generated.
e) A face of σ is a set of the form $\tau=\{v \in \sigma \mid u(v)=0\}=\sigma \cap u^{\perp}$ for some $u \in S_{\sigma}$. Then τ is again a cone in $\left(\mathbb{R}^{d}, \mathbb{Z}^{d}\right)$. Show $S_{\tau}=S_{\sigma}+\mathbb{Z}_{\geq 0}(-u)$.
f) * Let σ^{\prime} be another cone in $\left(\mathbb{R}^{d}, \mathbb{Z}^{d}\right)$ such that $\tau:=\sigma \cap \sigma^{\prime}$ is a face of σ and σ^{\prime}. Show that there is a $u \in \sigma^{*} \cap\left(-\sigma^{\prime}\right)^{*} \cap \mathbb{Z}^{d *}$ with $\tau=\sigma \cap u^{\perp}=\sigma^{\prime} \cap u^{\perp}$. Conclude $S_{\tau}=S_{\sigma}+S_{\sigma^{\prime}}$.

For the remaining exercises σ will denote a cone in $\left(\mathbb{R}^{d}, \mathbb{Z}^{d}\right)$ that is assumed to be strongly convex.
2. (Affine toric variety from a cone) Show
a) Set $\mathbb{C}\left[x, x^{-1}\right]:=\mathbb{C}\left[x_{1}, \ldots, x_{d}, x_{1}^{-1}, \ldots, x_{d}^{-1}\right]$ and

$$
A_{\sigma}:=\mathbb{C}\left[S_{\sigma}\right]:=\left\{\sum_{\text {finite }} c_{u} x^{u} \in \mathbb{C}\left[x, x^{-1}\right] \mid c_{u} \in \mathbb{C}, u \in S_{\sigma}\right\}
$$

where $x^{u}:=x_{1}^{u\left(e_{1}\right)} \ldots x_{d}^{u\left(e_{d}\right)}$. Here e_{1}, \ldots, e_{d} denote the standard basis of the lattice \mathbb{Z}^{d} in \mathbb{R}^{d}. Then A_{σ} is an integral domain and a finitely generated \mathbb{C} algebra generated by monomials. We call $X_{\sigma}:=\operatorname{Specm} A_{\sigma}$ the (affine) toric variety associated to σ.
b) $\operatorname{Hom}_{\text {monoid }}\left(S_{\sigma}, \mathbb{C}\right)$, where \mathbb{C} is considered as a monoid under multiplication, is naturally in bijection with X_{σ}.
c) Let $\tau=\sigma \cap u^{\perp}$ be a face of σ. Then A_{τ} identifies naturally with the localization $\left(A_{\sigma}\right)_{x^{u}}$. Consequently we obtain an open embedding $\iota_{\tau, \sigma}: X_{\tau} \hookrightarrow X_{\sigma}$.
d) * Let u_{1}, \ldots, u_{k} be generators of S_{σ}. To the relations $\sum_{j=1}^{k} \mu_{j} u_{j}=\sum_{j=1}^{k} \nu_{j} u_{j}$ in S_{σ}, where $\mu_{j}, \nu_{j} \geq 0$, we associate the ideal I_{σ} generated by $\xi^{\mu}-\xi^{\nu}$ in $\mathbb{C}[\xi]=$ $\mathbb{C}\left[\xi_{1}, \ldots, \xi_{k}\right]$. Then the assignment $\xi_{j} \mapsto x^{u_{j}}$ induces an isomorphism $X_{\sigma} \xlongequal{\cong}$ $V\left(I_{\sigma}\right)$.
3. Determine σ^{*}, generators of S_{σ} and I_{σ} and $V\left(I_{\sigma}\right)$ in each of the following cases.
a) $\sigma=\{0\}$ in $\left(\mathbb{R}^{d}, \mathbb{Z}^{d}\right)$
b) $\sigma=\sigma\left(v_{1}, v_{2}\right)$ in $\left(\mathbb{R}^{2}, \mathbb{Z}^{2}\right)$, where $\left(v_{1}, v_{2}\right)$ is any basis of the lattice \mathbb{Z}^{2}.
c) $\sigma=\sigma\left(e_{1}\right)$ in $\left(\mathbb{R}^{2}, \mathbb{Z}^{2}\right)$
d) $\sigma=\sigma\left(2 e_{1}-e_{2}, e_{2}\right)$ in $\left(\mathbb{R}^{2}, \mathbb{Z}^{2}\right)$.
4. (Torus action on an affine toric variety) Show
a) The d-dimensional torus

$$
\mathbb{T}^{d}:=X_{\{0\}}=\operatorname{Specm} \mathbb{C}\left[\mathbb{Z}^{d *}\right]=\operatorname{Specm} \mathbb{C}\left[x, x^{-1}\right]=\left(\mathbb{C}^{\times}\right)^{d}
$$

is an affine group variety, i.e. \mathbb{T}^{d} is a group and multiplication $m: \mathbb{T}^{d} \times \mathbb{T}^{d} \rightarrow$ \mathbb{T}^{d} and inverse map $I: \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$ are morphisms. In fact $m^{\sharp}: \mathbb{C}\left[x, x^{-1}\right] \rightarrow$ $\mathbb{C}\left[x, x^{-1}\right] \otimes \mathbb{C} \mathbb{C}\left[x, x^{-1}\right]$ is given by $f \mapsto f \otimes f$.
b) Under the identification $X_{\sigma} \cong \operatorname{Hom}_{\text {monoid }}\left(S_{\sigma}, \mathbb{C}\right)$

$$
\text { ac : } \mathbb{T}^{d} \times X_{\sigma} \rightarrow X_{\sigma},(s, t) \mapsto(u \mapsto s(u) t(u)),
$$

defines an action of \mathbb{T}^{d} on X_{σ}, i.e. ac satisfies

$$
\operatorname{ac}(1, \alpha)=\alpha, \operatorname{ac}(s t, \alpha)=\operatorname{ac}(s, \operatorname{ac}(t, \alpha))
$$

and ac is a morphism. In fact ac ${ }^{\sharp}: A_{\sigma} \rightarrow \mathbb{C}\left[x, x^{-1}\right] \otimes_{\mathbb{C}} A_{\sigma}$ is given by $f \mapsto$ $f \otimes f$. Thus $\iota_{\{0\}, \sigma}: \mathbb{T}^{d} \hookrightarrow X_{\sigma}$ respects the \mathbb{T}^{d}-action if we let \mathbb{T}^{d} act on itself by multiplication. Also note $\operatorname{dim} X_{\sigma}=d$.
c) * Formulate the action of \mathbb{T}^{d} on $V\left(I_{\sigma}\right)$.
d) $*$ Check in the examples of $\mathbf{3}$ that the orbits of the \mathbb{T}^{d}-action on X_{σ} are naturally in bijection with the faces of σ. Which faces correspond to \mathbb{T}^{d}-fixed points?
5. (Smoothness of X_{σ} in terms of σ) Show
a) If $v_{1}, \ldots, v_{N} \in \mathbb{Z}^{d}$ are part of a \mathbb{Z}-basis of \mathbb{Z}^{d}, then the toric variety of the cone $\sigma=\sigma\left(v_{1}, \ldots, v_{N}\right)$ is $X_{\sigma} \cong \mathbb{A}^{N} \times \mathbb{T}^{d-N}$. In particular X_{σ} is smooth.
b) * If X_{σ} is smooth, then $\sigma=\sigma\left(v_{1}, \ldots, v_{N}\right)$ for some v_{1}, \ldots, v_{N} that are part of a \mathbb{Z}-basis of \mathbb{Z}^{d}.

Hint: Consider the cotangent space $\mathfrak{m}_{x_{\sigma}} / \mathfrak{m}_{x_{\sigma}}^{2}$ at the point $x_{\sigma} \in X_{\sigma}$ defined by the monoid homomorphism $S_{\sigma} \rightarrow \mathbb{C}$ given by

$$
u \mapsto \begin{cases}1 & u \in \sigma^{\perp} \\ 0 & \text { else }\end{cases}
$$

6. * (Toric variety from a fan) Let Δ be a fan, i.e. a finite collection of cones such that
7. Each face of a cone in Δ is again a cone in Δ.
8. The intersection of two cones in Δ is a face of each.

Show
a) Let X_{Δ} be the prevariety glued from the X_{σ} via the open embeddings $\iota_{\sigma \cap \sigma^{\prime}, \sigma}$: $X_{\sigma \cap \sigma^{\prime}} \hookrightarrow X_{\sigma}$ and $\iota_{\sigma \cap \sigma^{\prime}, \sigma^{\prime}}: X_{\sigma \cap \sigma^{\prime}} \hookrightarrow X_{\sigma^{\prime}}$ for $\sigma, \sigma^{\prime} \in \Delta$. The diagonal map $X_{\sigma \cap \sigma^{\prime}} \rightarrow X_{\sigma} \times X_{\sigma^{\prime}}$ is a closed embedding and consequently X_{Δ} is separated. We call X_{Δ} the toric variety associated to Δ.

Remark: We may take Δ to consist of all the faces of a single cone σ, in which case $X_{\Delta}=X_{\sigma}$ holds. Using exercise 4 one can show that there is a \mathbb{T}^{d}-action on X_{Δ} and an open dense embedding $\mathbb{T}^{d} \hookrightarrow X_{\Delta}$ respecting the \mathbb{T}^{d}-action.
b) Find a fan Δ such that $X_{\Delta} \cong \mathbb{A}^{1}, \mathbb{P}^{1}, \mathbb{A}^{1} \times \mathbb{P}^{1}, \mathbb{P}^{1} \times \mathbb{P}^{1}$ and \mathbb{P}^{2} respectively. Describe the cones $\sigma \in \Delta$ and the corresponding A_{σ}.

Due on Friday, April 24.

