Sheet 8

Unless stated otherwise we work over an algebraically closed field k.

1. Let us explain how the pictures of fans in $\left(\mathbb{R}^{2}, \mathbb{Z}^{2}\right)$
2.

2.

3.

describe

1. the blow-up of \mathbb{A}^{2} at the origin
2. the projection $\mathbb{P}^{3} \supseteq Q=V\left(z_{0} z_{3}-z_{1} z_{2}\right) \rightarrow \mathbb{P}^{2}$ from the point $p=[0,0,0,1]$ of sheet 6 , exercise 2 , given by $\left[z_{0}, z_{1}, z_{2}, z_{3}\right] \mapsto\left[z_{0}, z_{1}, z_{2}\right]$
3. the standard quadratic transformation $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ of sheet 6 , exercise $\mathbf{4}$ and $\mathbf{5}$, given by $\left[z_{0}, z_{1}, z_{2}\right] \mapsto\left[z_{1} z_{2}, z_{0} z_{2}, z_{1} z_{2}\right]$,
see also sheet 7 , exercise $\mathbf{6 b}$. To this end, let Δ be a fan in $\left(\mathbb{R}^{2}, \mathbb{Z}^{2}\right)$ such that X_{Δ} is smooth and let $\sigma \in \Delta$ be of dimension two.
a) Using sheet 7 , exercise $\mathbf{5 b}$, show that there is a basis v_{1}, v_{2} of \mathbb{Z}^{2} such that $\sigma=$ $\sigma\left(v_{1}, v_{2}\right)$.
b) Set $v:=v_{1}+v_{2}$. In Δ, we replace σ by the cones $\sigma\left(v_{1}, v\right)$ and $\sigma\left(v, v_{2}\right)$ producing a new fan Δ^{\prime} in $\left(\mathbb{R}^{2}, \mathbb{Z}^{2}\right)$. Show that there is a natural \mathbb{T}^{2}-equivariant morphism $X_{\Delta^{\prime}} \rightarrow X_{\Delta}$ and that it identifies with the blow-up morphism $\pi: \mathrm{Bl}_{x_{\sigma}} X_{\Delta} \rightarrow X_{\Delta}$ of X_{Δ} at x_{σ}. Here x_{σ} is the unique \mathbb{T}^{2}-fixed point in X_{σ}. It can be defined as in sheet 7 , exercise $\mathbf{5 b}$, by

$$
S_{\sigma} \rightarrow \mathbb{C}, u \mapsto \begin{cases}1 & u=0 \\ 0 & u \neq 0\end{cases}
$$

2. Go through the proof of Harris, Theorem 3.5, which shows that $\pi_{p}(X)$ is a projective variety using the resultant. Here $\pi_{p}: \mathbb{P}^{n}-\{p\} \rightarrow \mathbb{P}^{n-1}$ is the projection from a point $p \in \mathbb{P}^{n}$ and X is a projective variety in \mathbb{P}^{n} not containing p.
3. Let us assume char $k=0$. We identify the space of quadrics in \mathbb{P}^{2} with \mathbb{P}^{5} in the natural way. Let $\Sigma_{1} \subseteq \Sigma_{2}$ be the space of quadrics of rank one and of rank ≤ 2 respectively. Show
a) Σ_{1} is the image of a Veronese embedding $\nu_{2}: \mathbb{P}^{2} \hookrightarrow \mathbb{P}^{5}$.
b) Σ_{2} is defined by a single cubic equation. The set of singular points in Σ_{2} is Σ_{1}.

Hint: Jacobian criterion
4. Let us assume char $k=0$.
a) Describe the singular points of $V_{f}:=V\left(y^{2}-f(x)\right) \subseteq \mathbb{A}^{2}$ in terms of $f \in k[x]$. When is V_{f} smooth, when irreducible?

Hint: Jacobian criterion
b) Let $d \geq 1$. Under the identification of $\left\{f \in k[x] \mid f(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0}\right\} \cong$ \mathbb{A}^{d} show that the sets

$$
\left\{f \mid V_{f} \text { smooth }\right\} \subseteq\left\{f \mid V_{f} \text { irreducible }\right\} \subseteq \mathbb{A}^{d}
$$

are both open. Compute the codimension of their complements in \mathbb{A}^{d}.
5. Let X be a variety. Show that $X \rightarrow \mathbb{Z}_{\geq 0}, p \mapsto \operatorname{dim} \mathrm{~T}_{p} X$, is upper semicontinuous, i.e. $\left\{p \in X \mid \operatorname{dim} \mathrm{T}_{p} X \geq n\right\}$ is closed for any $n \in \mathbb{Z}_{\geq 0}$.

Due on Friday, May 8.

