Prof. Emmanuel Kowalski

Exercise sheet 11

1. Let

$$\rho: G \to \mathrm{GL}(V)$$

be a K-representation of a group G. Let E = End(V) be the vector space of linear maps from V to V.

1. Show that defining

$$\tau(g)A = gAg^{-1}$$

defines a representation τ of G on E.

2. Show that E^G , the space of fixed points of E for this representation, is equal to $\operatorname{Hom}_G(V,V)$.

2. Let

$$\varrho: G \to \mathrm{GL}(V)$$

be a K-representation of a group G, and let

$$\chi: G \to K^{\times}$$

be a one-dimensional representation.

1. Show that defining

$$\varrho_{\chi}(g) = \chi(g)\varrho(g)$$

gives a representation ϱ_{χ} of G on V.

- 2. Show that a subspace W of V is stable under ϱ if and only if it is stable under ϱ_{χ} .
- 3. Show that ϱ is irreducible (resp. semisimple) if and only if ϱ_{χ} is irreducible (resp. semisimple).
- **3.** Let $G = \mathbb{C}$, $V = \mathbb{C}^2$ and define ϱ by

$$\varrho(z) = \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \in GL(V).$$

- 1. Show that ϱ is a representation of G on V.
- 2. Show that the line $L \subset V$ spanned by the first basis vector is a subrepresentation of G.

- 3. Show that there does not exist a subspace $W \subset V$ such that $L \oplus W = V$ and W is a subrepresentation.
- 4. Show that ϱ is *not* semisimple.

4. Let

$$\varrho: G \to \mathrm{GL}(V)$$

be a K-representation of a group G. Let V' be the dual vector space to V.

1. Define $\pi(g) \in \text{End}(V')$ by the relation

$$(\pi(g)(\lambda))(v) = \lambda(\varrho(g^{-1})(v))$$

for $\lambda \in V'$ and $v \in V$. Show that this is a representation of G on V' (it is called the *contragredient* of ϱ).

- 2. If $\dim(V)$ is finite, find a natural bijection between subrepresentations of ϱ and subrepresentations of π .
- 3. Deduce that if $\dim(V)$ is finite, then ϱ is irreducible if and only if π is irreducible.
- 4. If $\dim(V)$ is finite, show that the bidual V'', with the contragredient of the contragredient representation, is isomorphic to V as a representation of G.