Ferienserie

1. Let G be a finite group.
2. Show that if ϱ is an irreducible representation of G over \mathbb{C}, it is finite-dimensional.
3. Show that G is abelian if and only if all irreducible representations of G over \mathbb{C} are one-dimensional. [Hint: to show one implication, apply Schur's Lemma; for the other, count conjugacy classes.]
4. Let ϱ be an irreducible finite-dimensional complex representation of G. Let H be the center of G. Show that there exists a homomorphism $\omega: H \rightarrow \mathbb{C}^{\times}$such that

$$
\varrho(h)=\omega(h) \operatorname{Id}
$$

for all $h \in H$ (namely, the center of G acts by scalars).
2. Let G be a finite group, and let

$$
\varrho: G \rightarrow \mathrm{GL}(V)
$$

be a finite-dimensional complex representation of G. Let $E=\operatorname{End}(V)$ be the vector space of linear maps from V to V.

Show that the character of the representation $\tau: G \rightarrow \mathrm{GL}(E)$ defined by

$$
\tau(g) A=g A g^{-1}
$$

is $\chi_{\tau}(g)=\left|\chi_{\varrho}(g)\right|^{2}$, where χ_{ϱ} is the character of ϱ.
3. Let $\varrho: G \rightarrow \mathrm{GL}(V)$ be a finite-dimensional complex representation of a finite group G. Consider the linear transformation $P: V \rightarrow V$ defined by

$$
P(v)=\frac{1}{|G|} \sum_{g \in G} \varrho(g) v .
$$

1. Show that P is a linear projection on the subspace V^{G} of vectors invariant under ϱ (i.e., $P \circ P=P$, and the image of P is V^{G}).
2. Show that $P \in \operatorname{Hom}_{G}(V, V)$.
3. Let $\langle\cdot, \cdot\rangle$ be an inner-product on V such that $\varrho(g)$ is unitary with respect to the inner-product for all g. Show that P is the orthogonal projection on V^{G}.
4. Show that the dimension of V^{G} is given by

$$
\operatorname{dim} V^{G}=\sum_{g \in G} \chi_{\varrho}(g)
$$

where χ_{ϱ} is the character of G.
4. Let G be a finite group. Let $n \geq 1$, and suppose that G acts on the finite set $X_{n}=$ $\{1, \ldots, n\}$. Let $V=\mathbb{C}^{n}$ and $\left(e_{1}, \ldots, e_{n}\right)$ the canonical basis of V.

1. Show that if we define $\varrho(g): V \rightarrow V$ by

$$
\varrho(g) e_{i}=e_{g \cdot i},
$$

we obtain a representation of G on V.
2. Show that the character of ϱ is given by

$$
\chi_{\varrho}(g)=\left|\left\{i \in X_{n} \mid g \cdot i=i\right\}\right| .
$$

3. Assume that G acts transitively on X_{n}. Show that

$$
\operatorname{dim} V^{G}=1,
$$

and identify a generator of V^{G}.
4. Show that the subspace

$$
W=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V \mid x_{1}+\cdots+x_{n}=0\right\}
$$

is a subrepresentation of V. Let π be the representation of G on W. Show that

$$
\chi_{\pi}(g)=\chi_{\varrho}(g)-1 .
$$

Assume now that $n \geq 2$ and that G acts doubly-transitively on X_{n} : for any $i \neq j$ in X_{n}, there exists $g \in G$ such that $g \cdot 1=i$ and $g \cdot 2=j$.
5. Show that for any $i \neq j$, the subset

$$
\{g \in G \mid g \cdot 1=i \text { and } g \cdot 2=j\}
$$

has the same size.
6. Show that

$$
\frac{1}{|G|} \sum_{g \in G}\left|\chi_{\pi}(g)\right|^{2}=1,
$$

and deduce that the action of G on W is irreducible.

