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Solutions of exercise sheet 1

1. Let K be a field. For each of the following statements, indicate whether it is true (with
a proof) or false (by giving and explaining a counterexample):

1. Every algebraic extension L of K is a finite extension.

2. The field C is an algebraic closure of Q.

3. Let L/K be a finite extension and x ∈ L; if P is the minimal polynomial of x,
then we have [L : K] = deg(P ).

4. The separable degree of the extension Q( 4
√

2)/Q is 4.

5. There exists a finite field of order 243.

6. The extension Q(exp(2iπ/123))/Q is algebraic.

7. If K2/K1 and K1/K are algebraic extensions, then K2/K is algebraic.

8. Let L = Q(
√

2, exp(2iπ/127),
√

3 + 4
√

12); there exists x ∈ C such that L = Q(x).

9. Let L/K be a separable field extension and n ≥ 1 an integer such that [K(x) :
K] ≤ n for all x ∈ L; then [L : K] ≤ n.

Solution:

1. False. For instance, the algebraic closure F̄p of the finite field Fp is infinite (as seen
in the first semester, one can embed for n a positive integer each field Fpn inside
F̄p. Since a finite extension of a finite field is finite, F̄p is not a finite extension of
Fp. But an algebraic closure is an algebraic extension by definition, so that this
is indeed a counterexample.

2. False. C is not an algebraic extension of Q, so by definition of algebraic closure
it cannot be an algebraic closure of Q. The fact that this is a transcendental
extension can be stated by proving, for instance, that e or π are not algebraic.
However the proof is not trivial (this is done more in general by the Lindemann-
Weierstrass Theorem).

3. False. For instance, let K = Q and L = Q( 4
√

2). We have [L : K] = 4, but for the
element x =

√
2 has minimal polynomial P (X) = X2 − 2 of degree 2.

4. True. Indeed, there are precisely 4 embedding of Q( 4
√

2) ∼= Q[X]/(X4 − 2) inside
Q̄ which fix Q. Indeed, such an embedding is determined by choosing an image
of 4
√

2, which simply needs to be a root of X4 − 2, which is separable (it has 4
distinct roots 4

√
2ik, where k = 0, 1, 2, 3).

5. True, because 243 = 35 and we can build F243 as a particular degree-5 extension
of F3.
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6. True, because ξ123 = exp(2iπ/123) is algebraic over Q, and algebraic elements
generate algebraic extensions. Indeed, ξ123 is a root of the polynomial X123− 1 ∈
Q[X]. The minimal polynomial is the 123-th cyclotomic polynomial

Φ123(X) =
∏

1≤k≤122
(k,123)=1

(X − ξk123).

7. True. Take x ∈ K2 and let P = Xn + a1X
n−1 + · · ·+ an−1X + an ∈ K1[X] be its

minimal polynomial. Denote K0 = K(a1, . . . , an). The extension K0/K is finite
(since it is finitely generated and algebraic). Also the extension K0(x)/K0 is finite,
because x is algebraic over K0 by construction. Since finiteness is preserved in
towers, the extension K0(x)/K is finite, and so is the subextension K(x)/K. In
particular, K(x)/K is algebraic, and x is algebraic over K.

8. True. Let α =
√

2, β = exp(2iπ/127) and γ =
√

3 + 4
√

12. Those three elements
of C are algebraic over Q:

• α is a root of X2 − 2;

• β is a root of X127 − 1;

• γ is a root of (X2 − 3)4 − 12.

Then L is a finitely generated algebraic extension of Q, so that it is finite. We
also know that finite extensions of Q are always separable, so that we can apply
the primitive element theorem and get that there exists x ∈ L ⊆ C such that
L = Q(x).

9. True. Without loss of generality we can assume that n is minimal, so that there
exists x ∈ L such that [K(x) : K] = n. Suppose by contradiction that [L : K] > n.
Then K(x) 6= L and we can take y ∈ L \K(x). Then, for L0 := K(x, y), we get
that L0/K is a finitely generated algebraic separable extension, so that it is finite
and separable and we can apply the primitive element theorem, obtaining z ∈ L0

such that L0 = K(z). Then

[K(z) : K] = [K(x, y) : K] = [K(x, y) : K(x)][K(x) : K] > [K(x) : K] = n,

contradiction.

2. Let x =
√

2 + 3
√

3.

1. Prove that Q(x) = Q(
√

2, 3
√

3). [Hint: Find the minimal polynomial of x −
√

2
and expand]

2. Compute the minimal polynomial of x over Q(
√

2). [Hint: [Q(x) : Q(
√

2)] =?]

3. Compute the minimal polynomial of x over Q.

Solution:
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1. Clearly, Q(x) ⊆ Q(
√

2, 3
√

3). For the other inclusion, it is enough to prove that√
2 ∈ Q(x), since this also implies that 3

√
3 = x−

√
2 ∈ Q(x). This can be done by

trying to solve Point (2): from (x−
√

2)3 = 3 we deduce x3+6x−3 =
√

2(3x2+2),
so that

√
2 =

x3 + 6x− 3

3x2 + 2
∈ Q(x).

2. From the previous point, we have that x satisfies the polynomial

Q(X) = X3 − 3
√

2X2 + 6X − 2
√

2− 3 ∈ Q(
√

2)[X].

To prove that this is the minimal polynomial, it is enough to prove that Q(x) =
Q(
√

2)( 3
√

3) is a degree-3 extension of Q(
√

2), which is equivalent to saying that
3
√

3 has degree 3 over Q(
√

2). To prove this last equivalent statement, notice that
3
√

3 is a root of the polynomial f = X3 − 3 ∈ Q(
√

2)[X], which can be easily
checked to be irreducible. Indeed deg(f) = 3, so that it is enough to check that
f has no root in Q(

√
2). For every element a + b

√
2 ∈ Q(

√
2), with a, b ∈ Q, we

have (as 1 and
√

2 are linear independent over Q):

(a+ b
√

2)3 = 3 ⇐⇒
{
a3 + 6ab2 = 3
3a2b+ 2b3 = 0.

The second equation holds for b = 0 or 3a2 + 2b2 = 0, which both give b = 0, so
that a3 = 3, impossible inQ. Hence [Q(x) : Q] = 3 and x has minimal polynomial
Q over Q(

√
2).

3. We have that [Q(
√

2) : Q] = 2, so that from what we found in the previous point
we get

[Q(x) : Q] = [Q(x) : Q(
√

2)][Q(
√

2) : Q] = 6.

Then the minimal polynomial of x over Q has degree 6.

Now, continuing the computations from Point (1) we get

x6 + 36x2 + 9 + 12x4 − 6x3 − 36x = 2(9x4 + 12x2 + 4),

so that x is a root of P (X) = X6 − 6X4 − 6X3 + 12X2 − 36X + 1, which by our
previous discussion is the minimal polynomial of x over Q.

3. Let p be a prime number and K a field of characteristic p. Let φ : K → K be the
Frobenius morphism given by φ(x) = xp.

1. Give an example of field K where φ is surjective, and an example where it is not.

We assume that φ is surjective.

2. Let P ∈ K[X] be a polynomial such that P ′ = 0. Prove that there exists Q ∈ K[X]
such that P = Qp.

3. Deduce that any irreducible polynomial P ∈ K[X] is separable.
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4. Deduce that any algebraic extension L/K is separable.

Solution:

1. φ is always injective (as ker(φ) = 0), so that it is surjective when K is finite (e.g.,
K = Fp). On the other hand, for K = Fp(T ) we have φ(K) = Fp(T

p) (indeed,
φ(Fp[X]) = Fp[X] by surjectivity of φ on Fp and the fact that φ is additive, so
that the isomorphism φ : Fp[T ] −→ Fp[T

p] extends to the corresponding fraction
fields). In particular, φ is not surjective for K = Fp(T ).

2. Write P =
∑n

i=0 aiX
i. Then P ′ =

∑n
i=0 iaiX

i−1 = 0 gives iai for each i which
implies that ai = 0 for p - i, so that P ∈ K[Xp] = φ(K[X]) as in the previous
point (because we are now assuming that φ is surjective), meaning that there is a
polynomial Q ∈ K[X] such that Qp = P .

3. Suppose that P is irreducible. As seen in class, P is then separable if and only
if P ′ 6= 0. But if by contradiction P ′ = 0, then by previous point P = Qp,
contradiction with P irreducible.

4. It is enough to prove that every x ∈ L is separable over K, that is, it has separable
minimal polynomial. This is immediate from the previous point together with the
irreducibility of the minimal polynomial.

4. Find an element x ∈ K = Q(
√

2,
√

3) such that K = Q(x).

Solution:

We claim that x =
√

2 +
√

3 is such an element. Of course, K ⊇ Q(x). On the other
hand, x(

√
3−
√

2) = 3− 2 = 1, so that
√

3−
√

2 = x−1 ∈ K. Then

1

2
(x+

√
3−
√

2) =
√

3 ∈ K,

and it follows that
√

2 ∈ Q(x) as well. This implies K = Q(x).

5. Let K be a field and let E1 and E2 be two algebraically closed extensions of K. Let
K̄1 and K̄2 denote the algebraic closure of K in E1 and E2 respectively.

Let L be an algebraic extension of K.

1. Show that for any field homomorphism σ : L → E1 such that σ|K = IdK , the
image σ(L) is contained in K̄1.

2. Show that the number of field homomorphisms σ : L→ E1 such that σ|K = IdK

is equal to the number of field homomorphisms σ : L→ E2 such that σ|K = IdK .

Solution:
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1. Let x ∈ L, i ∈ {1, 2} and σ : L→ Ei such that σ|K = IdK . Being L an algebraic
extension of K, there exist a minimal polynomial P of x, so that P (x) = 0. Then

P (σ(x)) = σ(P (x)) = σ(0) = 0,

which implies that σ(x) is algebraic over K, so that σ(x) ∈ K̄i. Then σ(L) = K̄i.

2. Given two field extensions N1, N2 of K, denote

HomK,m(N1, N2) := {ψ : N1 −→ N2|φ is a field homomorphism and ψ|K = IdK}.

From the previous point we get that for i = 1, 2 the field homomorphisms L −→ Ei

which fix K can be identified with those L −→ K̄i simply by restricting the
codomain. So there is a bijection γi : HomK,m(L,Ei)

∼−→ HomK,m(L, K̄i). By
unicity of the algebraic closure, there exists an isomorphism φ : K̄1 → K̄2, which
(similarly as in Exercise 4 from Exercise Sheet 7 from Algebra I) induces the map
φ∗ : HomK,m(L, K̄1) −→ HomK,m(L, K̄2) sending τ 7→ φ ◦ τ , which is easily seen
to have inverse (φ−1)∗ : σ 7→ φ−1 ◦ σ.

In conclusion,

HomK,m(L,E1)
∼−→ HomK,m(L, K̄1)

∼−→ HomK,m(L, K̄2)
∼←− HomK,m(L,E2),

so that in particular HomK,m(L,E1) and HomK,m(L,E2) are in bijection as we
were asked to prove.

N.B. The sets HomK ,m(N1, N2) have a natural structure of K-vector spaces, and
all the bijections we wrote are actually isomorphisms of K-vector spaces.


