Solutions of exercise sheet 1

1. Let K be a field. For each of the following statements, indicate whether it is true (with a proof) or false (by giving and explaining a counterexample):
2. Every algebraic extension L of K is a finite extension.
3. The field \mathbb{C} is an algebraic closure of \mathbb{Q}.
4. Let L / K be a finite extension and $x \in L$; if P is the minimal polynomial of x, then we have $[L: K]=\operatorname{deg}(P)$.
5. The separable degree of the extension $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}$ is 4 .
6. There exists a finite field of order 243.
7. The extension $\mathbb{Q}(\exp (2 i \pi / 123)) / \mathbb{Q}$ is algebraic.
8. If K_{2} / K_{1} and K_{1} / K are algebraic extensions, then K_{2} / K is algebraic.
9. Let $L=\mathbb{Q}(\sqrt{2}, \exp (2 i \pi / 127), \sqrt{3+\sqrt[4]{12}})$; there exists $x \in \mathbb{C}$ such that $L=\mathbb{Q}(x)$.
10. Let L / K be a separable field extension and $n \geq 1$ an integer such that $[K(x)$: $K] \leq n$ for all $x \in L$; then $[L: K] \leq n$.

Solution:

1. False. For instance, the algebraic closure \mathbb{F}_{p} of the finite field \mathbb{F}_{p} is infinite (as seen in the first semester, one can embed for n a positive integer each field $\mathbb{F}_{p^{n}}$ inside $\overline{\mathbb{F}}_{p}$. Since a finite extension of a finite field is finite, $\overline{\mathbb{F}}_{p}$ is not a finite extension of \mathbb{F}_{p}. But an algebraic closure is an algebraic extension by definition, so that this is indeed a counterexample.
2. False. \mathbb{C} is not an algebraic extension of \mathbb{Q}, so by definition of algebraic closure it cannot be an algebraic closure of \mathbb{Q}. The fact that this is a transcendental extension can be stated by proving, for instance, that e or π are not algebraic. However the proof is not trivial (this is done more in general by the LindemannWeierstrass Theorem).
3. False. For instance, let $K=\mathbb{Q}$ and $L=\mathbb{Q}(\sqrt[4]{2})$. We have $[L: K]=4$, but for the element $x=\sqrt{2}$ has minimal polynomial $P(X)=X^{2}-2$ of degree 2 .
4. True. Indeed, there are precisely 4 embedding of $\mathbb{Q}(\sqrt[4]{2}) \cong \mathbb{Q}[X] /\left(X^{4}-2\right)$ inside $\overline{\mathbb{Q}}$ which fix \mathbb{Q}. Indeed, such an embedding is determined by choosing an image of $\sqrt[4]{2}$, which simply needs to be a root of $X^{4}-2$, which is separable (it has 4 distinct roots $\sqrt[4]{2} i^{k}$, where $\left.k=0,1,2,3\right)$.
5. True, because $243=3^{5}$ and we can build \mathbb{F}_{243} as a particular degree-5 extension of \mathbb{F}_{3}.
6. True, because $\xi_{123}=\exp (2 i \pi / 123)$ is algebraic over \mathbb{Q}, and algebraic elements generate algebraic extensions. Indeed, ξ_{123} is a root of the polynomial $X^{123}-1 \in$ $\mathbb{Q}[X]$. The minimal polynomial is the 123 -th cyclotomic polynomial

$$
\Phi_{123}(X)=\prod_{\substack{1 \leq k \leq 122 \\(k, 123)=1}}\left(X-\xi_{123}^{k}\right)
$$

7. True. Take $x \in K_{2}$ and let $P=X^{n}+a_{1} X^{n-1}+\cdots+a_{n-1} X+a_{n} \in K_{1}[X]$ be its minimal polynomial. Denote $K_{0}=K\left(a_{1}, \ldots, a_{n}\right)$. The extension K_{0} / K is finite (since it is finitely generated and algebraic). Also the extension $K_{0}(x) / K_{0}$ is finite, because x is algebraic over K_{0} by construction. Since finiteness is preserved in towers, the extension $K_{0}(x) / K$ is finite, and so is the subextension $K(x) / K$. In particular, $K(x) / K$ is algebraic, and x is algebraic over K.
8. True. Let $\alpha=\sqrt{2}, \beta=\exp (2 i \pi / 127)$ and $\gamma=\sqrt{3+\sqrt[4]{12}}$. Those three elements of \mathbb{C} are algebraic over \mathbb{Q} :

- α is a root of $X^{2}-2$;
- β is a root of $X^{127}-1$;
- γ is a root of $\left(X^{2}-3\right)^{4}-12$.

Then L is a finitely generated algebraic extension of \mathbb{Q}, so that it is finite. We also know that finite extensions of \mathbb{Q} are always separable, so that we can apply the primitive element theorem and get that there exists $x \in L \subseteq \mathbb{C}$ such that $L=\mathbb{Q}(x)$.
9. True. Without loss of generality we can assume that n is minimal, so that there exists $x \in L$ such that $[K(x): K]=n$. Suppose by contradiction that $[L: K]>n$. Then $K(x) \neq L$ and we can take $y \in L \backslash K(x)$. Then, for $L_{0}:=K(x, y)$, we get that L_{0} / K is a finitely generated algebraic separable extension, so that it is finite and separable and we can apply the primitive element theorem, obtaining $z \in L_{0}$ such that $L_{0}=K(z)$. Then

$$
[K(z): K]=[K(x, y): K]=[K(x, y): K(x)][K(x): K]>[K(x): K]=n,
$$

contradiction.
2. Let $x=\sqrt{2}+\sqrt[3]{3}$.

1. Prove that $\mathbb{Q}(x)=\mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$. [Hint: Find the minimal polynomial of $x-\sqrt{2}$ and expand]
2. Compute the minimal polynomial of x over $\mathbb{Q}(\sqrt{2})$. $[$ Hint: $[\mathbb{Q}(x): \mathbb{Q}(\sqrt{2})]=$?]
3. Compute the minimal polynomial of x over \mathbb{Q}.

Solution:

1. Clearly, $\mathbb{Q}(x) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$. For the other inclusion, it is enough to prove that $\sqrt{2} \in \mathbb{Q}(x)$, since this also implies that $\sqrt[3]{3}=x-\sqrt{2} \in \mathbb{Q}(x)$. This can be done by trying to solve Point (2): from $(x-\sqrt{2})^{3}=3$ we deduce $x^{3}+6 x-3=\sqrt{2}\left(3 x^{2}+2\right)$, so that

$$
\sqrt{2}=\frac{x^{3}+6 x-3}{3 x^{2}+2} \in \mathbb{Q}(x) .
$$

2. From the previous point, we have that x satisfies the polynomial

$$
Q(X)=X^{3}-3 \sqrt{2} X^{2}+6 X-2 \sqrt{2}-3 \in \mathbb{Q}(\sqrt{2})[X] .
$$

To prove that this is the minimal polynomial, it is enough to prove that $\mathbb{Q}(x)=$ $\mathbb{Q}(\sqrt{2})(\sqrt[3]{3})$ is a degree- 3 extension of $\mathbb{Q}(\sqrt{2})$, which is equivalent to saying that $\sqrt[3]{3}$ has degree 3 over $\mathbb{Q}(\sqrt{2})$. To prove this last equivalent statement, notice that $\sqrt[3]{3}$ is a root of the polynomial $f=X^{3}-3 \in \mathbb{Q}(\sqrt{2})[X]$, which can be easily checked to be irreducible. Indeed $\operatorname{deg}(f)=3$, so that it is enough to check that f has no root in $\mathbb{Q}(\sqrt{2})$. For every element $a+b \sqrt{2} \in \mathbb{Q}(\sqrt{2})$, with $a, b \in \mathbb{Q}$, we have (as 1 and $\sqrt{2}$ are linear independent over \mathbb{Q}):

$$
(a+b \sqrt{2})^{3}=3 \Longleftrightarrow\left\{\begin{array}{l}
a^{3}+6 a b^{2}=3 \\
3 a^{2} b+2 b^{3}=0
\end{array}\right.
$$

The second equation holds for $b=0$ or $3 a^{2}+2 b^{2}=0$, which both give $b=0$, so that $a^{3}=3$, impossible in \mathbb{Q}. Hence $[\mathbb{Q}(x): \mathbb{Q}]=3$ and x has minimal polynomial Q over $\mathbb{Q}(\sqrt{2})$.
3. We have that $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$, so that from what we found in the previous point we get

$$
[\mathbb{Q}(x): \mathbb{Q}]=[\mathbb{Q}(x): \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=6 .
$$

Then the minimal polynomial of x over \mathbb{Q} has degree 6 .
Now, continuing the computations from Point (1) we get

$$
x^{6}+36 x^{2}+9+12 x^{4}-6 x^{3}-36 x=2\left(9 x^{4}+12 x^{2}+4\right),
$$

so that x is a root of $P(X)=X^{6}-6 X^{4}-6 X^{3}+12 X^{2}-36 X+1$, which by our previous discussion is the minimal polynomial of x over \mathbb{Q}.
3. Let p be a prime number and K a field of characteristic p. Let $\phi: K \rightarrow K$ be the Frobenius morphism given by $\phi(x)=x^{p}$.

1. Give an example of field K where ϕ is surjective, and an example where it is not.

We assume that ϕ is surjective.
2. Let $P \in K[X]$ be a polynomial such that $P^{\prime}=0$. Prove that there exists $Q \in K[X]$ such that $P=Q^{p}$.
3. Deduce that any irreducible polynomial $P \in K[X]$ is separable.
4. Deduce that any algebraic extension L / K is separable.

Solution:

1. ϕ is always injective (as $\operatorname{ker}(\phi)=0$), so that it is surjective when K is finite (e.g., $\left.K=\mathbb{F}_{p}\right)$. On the other hand, for $K=\mathbb{F}_{p}(T)$ we have $\phi(K)=\mathbb{F}_{p}\left(T^{p}\right)$ (indeed, $\phi\left(\mathbb{F}_{p}[X]\right)=\mathbb{F}_{p}[X]$ by surjectivity of ϕ on \mathbb{F}_{p} and the fact that ϕ is additive, so that the isomorphism $\phi: \mathbb{F}_{p}[T] \longrightarrow \mathbb{F}_{p}\left[T^{p}\right]$ extends to the corresponding fraction fields). In particular, ϕ is not surjective for $K=\mathbb{F}_{p}(T)$.
2. Write $P=\sum_{i=0}^{n} a_{i} X^{i}$. Then $P^{\prime}=\sum_{i=0}^{n} i a_{i} X^{i-1}=0$ gives $i a_{i}$ for each i which implies that $a_{i}=0$ for $p \nmid i$, so that $P \in K\left[X^{p}\right]=\phi(K[X])$ as in the previous point (because we are now assuming that ϕ is surjective), meaning that there is a polynomial $Q \in K[X]$ such that $Q^{p}=P$.
3. Suppose that P is irreducible. As seen in class, P is then separable if and only if $P^{\prime} \neq 0$. But if by contradiction $P^{\prime}=0$, then by previous point $P=Q^{p}$, contradiction with P irreducible.
4. It is enough to prove that every $x \in L$ is separable over K, that is, it has separable minimal polynomial. This is immediate from the previous point together with the irreducibility of the minimal polynomial.
5. Find an element $x \in K=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ such that $K=\mathbb{Q}(x)$.

Solution:

We claim that $x=\sqrt{2}+\sqrt{3}$ is such an element. Of course, $K \supseteq \mathbb{Q}(x)$. On the other hand, $x(\sqrt{3}-\sqrt{2})=3-2=1$, so that $\sqrt{3}-\sqrt{2}=x^{-1} \in K$. Then

$$
\frac{1}{2}(x+\sqrt{3}-\sqrt{2})=\sqrt{3} \in K
$$

and it follows that $\sqrt{2} \in \mathbb{Q}(x)$ as well. This implies $K=\mathbb{Q}(x)$.
5. Let K be a field and let E_{1} and E_{2} be two algebraically closed extensions of K. Let \bar{K}_{1} and \bar{K}_{2} denote the algebraic closure of K in E_{1} and E_{2} respectively.

Let L be an algebraic extension of K.

1. Show that for any field homomorphism $\sigma: L \rightarrow E_{1}$ such that $\left.\sigma\right|_{K}=\operatorname{Id}_{K}$, the image $\sigma(L)$ is contained in \bar{K}_{1}.
2. Show that the number of field homomorphisms $\sigma: L \rightarrow E_{1}$ such that $\left.\sigma\right|_{K}=\operatorname{Id}_{K}$ is equal to the number of field homomorphisms $\sigma: L \rightarrow E_{2}$ such that $\left.\sigma\right|_{K}=\operatorname{Id}_{K}$.

Solution:

1. Let $x \in L, i \in\{1,2\}$ and $\sigma: L \rightarrow E_{i}$ such that $\left.\sigma\right|_{K}=\operatorname{Id}_{K}$. Being L an algebraic extension of K, there exist a minimal polynomial P of x, so that $P(x)=0$. Then

$$
P(\sigma(x))=\sigma(P(x))=\sigma(0)=0,
$$

which implies that $\sigma(x)$ is algebraic over K, so that $\sigma(x) \in \bar{K}_{i}$. Then $\sigma(L)=\bar{K}_{i}$.
2. Given two field extensions N_{1}, N_{2} of K, denote
$\operatorname{Hom}_{K, \mathrm{~m}}\left(N_{1}, N_{2}\right):=\left\{\psi: N_{1} \longrightarrow N_{2} \mid \phi\right.$ is a field homomorphism and $\left.\left.\psi\right|_{K}=\operatorname{Id}_{K}\right\}$.
From the previous point we get that for $i=1,2$ the field homomorphisms $L \longrightarrow E_{i}$ which fix K can be identified with those $L \longrightarrow \bar{K}_{i}$ simply by restricting the codomain. So there is a bijection $\gamma_{i}: \operatorname{Hom}_{K, \mathrm{~m}}\left(L, E_{i}\right) \xrightarrow{\sim} \operatorname{Hom}_{K, \mathrm{~m}}\left(L, \bar{K}_{i}\right)$. By unicity of the algebraic closure, there exists an isomorphism $\phi: \bar{K}_{1} \rightarrow \bar{K}_{2}$, which (similarly as in Exercise 4 from Exercise Sheet 7 from Algebra I) induces the map $\phi^{*}: \operatorname{Hom}_{K, \mathrm{~m}}\left(L, \bar{K}_{1}\right) \longrightarrow \operatorname{Hom}_{K, \mathrm{~m}}\left(L, \bar{K}_{2}\right)$ sending $\tau \mapsto \phi \circ \tau$, which is easily seen to have inverse $\left(\phi^{-1}\right)^{*}: \sigma \mapsto \phi^{-1} \circ \sigma$.
In conclusion,

$$
\operatorname{Hom}_{K, \mathrm{~m}}\left(L, E_{1}\right) \xrightarrow{\sim} \operatorname{Hom}_{K, \mathrm{~m}}\left(L, \bar{K}_{1}\right) \xrightarrow{\sim} \operatorname{Hom}_{K, \mathrm{~m}}\left(L, \bar{K}_{2}\right) \stackrel{\sim}{\sim} \operatorname{Hom}_{K, \mathrm{~m}}\left(L, E_{2}\right),
$$

so that in particular $\operatorname{Hom}_{K, \mathrm{~m}}\left(L, E_{1}\right)$ and $\operatorname{Hom}_{K, \mathrm{~m}}\left(L, E_{2}\right)$ are in bijection as we were asked to prove.
N.B. The sets $\operatorname{Hom}_{K}, m\left(N_{1}, N_{2}\right)$ have a natural structure of K-vector spaces, and all the bijections we wrote are actually isomorphisms of K-vector spaces.

