Algebra II

D-MATH Prof. Emmanuel Kowalski

Exercise sheet 2

- **1.** Let k be a field with $char(k) \neq 2$.
 - 1. Let $a, b \in k$ be such that a is a square in $k(\beta)$, where β is an element algebraic over k such that $\beta^2 = b$. Prove that either a or ab is a square in k. [Hint: Distinguish the cases $\beta \in k$ and $\beta \notin k$. For the second case, expand $(c + d\beta)^2$, for $c, d \in k$.]
 - 2. Now consider K = k(u, v), where $u, v \notin k$ are elements in an algebraic extension of k such that $u^2, v^2 \in k$. Set $\gamma = u(v+1)$. Prove: $K = k(\gamma)$.
- **2.** 1. Prove that if [K:k] = 2, then $k \subseteq K$ is a normal extension.
 - 2. Show that $\mathbb{Q}(\sqrt[4]{2}, i)/\mathbb{Q}$ is normal.
 - 3. Show that $\mathbb{Q}(\sqrt[4]{2}(1+i))/\mathbb{Q}$ is not normal over \mathbb{Q} .
 - 4. Deduce that given a tower L/K/k of field extensions, L/k needs not to be normal even if L/K and K/k are normal.
- **3.** Let K be a field, and L = K(X) a field of rational functions.
 - 1. Show that, for any $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(K)$, the map

$$\sigma_A(f) = f\left(\frac{aX+b}{cX+d}\right)$$

defines a K-automorphism of L, and we obtain a group homomorphism

$$i: \operatorname{GL}_2(K) \longrightarrow \operatorname{Aut}(L/K).$$

- 2. Compute $\ker(i)$.
- 3. For $f \in K(X)$, write $f = \frac{p(X)}{q(X)}$, with $p(X), q(X) \in K[X]$ coprime polynomials. Prove that p(X) - q(X)Y is an irreducible polynomial in K[X,Y], and deduce that X is algebraic of degree max{deg(p), deg(q)} over K(f).
- 4. Conclude that *i* is surjective [*Hint:* For $\sigma \in \operatorname{Aut}(L/K)$, apply previous point with $f = \sigma(X)$].
- 5. Is an endomorphism of the field K(X) which fixes K always an automorphism?

Let K be field containing Q. Show that any automorphism of K is a Q-automorphism.
From now on, let σ : R → R be a field automorphism. Show that σ is increasing:

$$x \le y \Longrightarrow \sigma(x) \le \sigma(y).$$

- 3. Deduce that σ is continuous.
- 4. Deduce that $\sigma = \mathrm{Id}_{\mathbb{R}}$.