Exercise sheet 4

1. Let K be a field of characteristic 2 , and fix an algebraic closure \bar{K} of K. Suppose L / K is a Galois quadratic extension contained in \bar{K}.
2. Show that there exists $a \in K$ such that $L=K(b)$ where b is a root of $X^{2}-X+a$.
3. Prove that $\operatorname{Gal}(L / K) \cong \mathbb{Z} / 2 \mathbb{Z}$, and express the action of the generator of G on L as a matrix with respect to the basis $(1, b)$.
4. Suppose that for $i=1,2$ we have elements $a_{i} \in K$ and we consider the field extensions $L_{i}=K\left(b_{i}\right)$, where $b_{i} \in \bar{K}$ are roots of polynomials $X^{2}-X+a_{i}$, which we suppose to be irreducible. Show that $L_{1}=L_{2}$ if and only if there exists $\mu \in K$ such that $\mu^{2}-\mu=a_{2}-a_{1}$.
5. Consider the polynomial $f=X^{3}-2 \in \mathbb{Q}[X]$, and let L be the splitting field of f.
6. Prove that $[L: \mathbb{Q}]=6$, and find intermediate extensions L_{1} and L_{2} of L over \mathbb{Q} such that $\left[L_{1}: \mathbb{Q}\right]=2$ and $\left[L_{2}: \mathbb{Q}\right]=3$.
7. Prove that L / \mathbb{Q} is a Galois extension with Galois group $G=S_{3}$ [Hint: The Galois group of L acts faithfully on the roots of $f]$.
8. Which of the four field extensions L / L_{i} and L_{i} / \mathbb{Q}, for $i=1,2$ are Galois? Find their Galois groups.
9. Let K be a field and $P \in K[X]$ a separable degree- n irreducible polynomial, L its splitting field and $G=\operatorname{Gal}(L / K)$.
10. Prove that $|G| \leq \operatorname{deg}(P)$!

From now on, assume that P is a palindromic monic polynomial of even degree, i.e., there exist a positive integer d and elements a_{1}, \ldots, a_{d} such that

$$
P=X^{2 d}+a_{1} X^{2 d-1}+\cdots+a_{d-1} X^{d+1}+a_{d} X^{d}+a_{d-1} X^{d-1}+\cdots+a_{1} X+1 .
$$

Show that:

1. The set of roots Z_{P} of P is stable under $x \mapsto \frac{1}{x}$.
2. Given the following subgroup of $S_{2 d}=\operatorname{Sym}\left(\left\{\alpha_{1}^{+}, \alpha_{1}^{-}, \alpha_{2}^{+}, \alpha_{2}^{-}, \ldots, \alpha_{d}^{+}, \alpha_{d}^{-}\right\}\right)$:

$$
W_{2, d}=\left\{\sigma \in S_{2 d} \mid \forall i \exists j: \sigma\left(\left\{\alpha_{i}^{+}, \alpha_{i}^{-}\right\}\right)=\left\{\alpha_{j}^{+}, \alpha_{j}^{-}\right\}\right\},
$$

we have that G can be embedded in $W_{2, d}$.
3. $|G| \leq 2^{d} d$!
4. Let $K=\mathbb{Q}[\sqrt{2}, \sqrt{3}]$.

1. Show that K is Galois over \mathbb{Q} with Galois group the $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
2. Now let $L=K[\sqrt{(\sqrt{2}+2)(\sqrt{3}+3)}]$. Show that L is Galois over \mathbb{Q}.
3. Let L / K be a finite Galois extension. Take $x \in L$ and assume that the elements $\sigma(x)$ are all distinct for $\sigma \in \operatorname{Gal}(L / K)$. Show: $L=K(x)$.
