Prof. Emmanuel Kowalski

Exercise sheet 4

- 1. Let K be a field of characteristic 2, and fix an algebraic closure \bar{K} of K. Suppose L/K is a Galois quadratic extension contained in \bar{K} .
 - 1. Show that there exists $a \in K$ such that L = K(b) where b is a root of $X^2 X + a$.
 - 2. Prove that $Gal(L/K) \cong \mathbb{Z}/2\mathbb{Z}$, and express the action of the generator of G on L as a matrix with respect to the basis (1,b).
 - 3. Suppose that for i=1,2 we have elements $a_i \in K$ and we consider the field extensions $L_i = K(b_i)$, where $b_i \in \bar{K}$ are roots of polynomials $X^2 X + a_i$, which we suppose to be irreducible. Show that $L_1 = L_2$ if and only if there exists $\mu \in K$ such that $\mu^2 \mu = a_2 a_1$.
- **2.** Consider the polynomial $f = X^3 2 \in \mathbb{Q}[X]$, and let L be the splitting field of f.
 - 1. Prove that $[L:\mathbb{Q}]=6$, and find intermediate extensions L_1 and L_2 of L over \mathbb{Q} such that $[L_1:\mathbb{Q}]=2$ and $[L_2:\mathbb{Q}]=3$.
 - 2. Prove that L/\mathbb{Q} is a Galois extension with Galois group $G = S_3$ [Hint: The Galois group of L acts faithfully on the roots of f].
 - 3. Which of the four field extensions L/L_i and L_i/\mathbb{Q} , for i = 1, 2 are Galois? Find their Galois groups.
- **3.** Let K be a field and $P \in K[X]$ a separable degree-n irreducible polynomial, L its splitting field and G = Gal(L/K).
 - 0. Prove that $|G| \leq \deg(P)!$

From now on, assume that P is a palindromic monic polynomial of even degree, i.e., there exist a positive integer d and elements a_1, \ldots, a_d such that

$$P = X^{2d} + a_1 X^{2d-1} + \dots + a_{d-1} X^{d+1} + a_d X^d + a_{d-1} X^{d-1} + \dots + a_1 X + 1.$$

Show that:

- 1. The set of roots Z_P of P is stable under $x \mapsto \frac{1}{x}$.
- 2. Given the following subgroup of $S_{2d} = \text{Sym}(\{\alpha_1^+, \alpha_1^-, \alpha_2^+, \alpha_2^-, \dots, \alpha_d^+, \alpha_d^-\})$:

$$W_{2,d} = \{ \sigma \in S_{2d} | \forall i \,\exists j : \sigma(\{\alpha_i^+, \alpha_i^-\}) = \{\alpha_i^+, \alpha_i^-\} \},$$

we have that G can be embedded in $W_{2,d}$.

3. $|G| \le 2^d d!$

4. Let
$$K = \mathbb{Q}[\sqrt{2}, \sqrt{3}]$$
.

- 1. Show that K is Galois over \mathbb{Q} with Galois group the $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 2. Now let $L = K\left[\sqrt{(\sqrt{2}+2)(\sqrt{3}+3)}\right]$. Show that L is Galois over $\mathbb Q$.
- **5.** Let L/K be a finite Galois extension. Take $x \in L$ and assume that the elements $\sigma(x)$ are all distinct for $\sigma \in \operatorname{Gal}(L/K)$. Show: L = K(x).