D-MATH Algebra 1 HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 4

1. Let K be a field of characteristic 2, and fix an algebraic closure K of K. Suppose L/K
is a Galois quadratic extension contained in K.

1. Show that there exists a € K such that L = K (b) where b is a root of X2 — X + a.

2. Prove that Gal(L/K) = Z /2%, and express the action of the generator of G on L
as a matrix with respect to the basis (1,b).

3. Suppose that for ¢ = 1,2 we have elements a; € K and we consider the field
extensions L; = K (b;), where b; € K are roots of polynomials X2 — X + a;, which
we suppose to be irreducible. Show that L = Lo if and only if there exists u € K
such that p> — p = as — ay.

Solution:

1. Let bp € L\ K and f(X) = X% — sX +t its minimal polynomial over K. Let us
first notice that s # 0. Else, we would have b = —t, giving

FX)=X%+t= (X —b)(X +bo) = (X —bg)?

since char(L) = char(K) = 2, so that f would not be separable and L/K would
not be Galois, contradiction.

Now by necessarily generates the whole L, and in order to find an element b
in L = K(bg) giving a minimal polynomial of the form X? — X + a, we write
b= Abg + pu for A\, u € K and require b> — b € K. This gives (using the fact that
the characteristic is 2):

K 3 X202 + 12 — Moo — o = A2(sbg — t) + p® — Abg — pu,

which by K-linear independence of 1 and bg is equivalent to A>s — A = 0. This is
true if and only if A\ =0 or A = % The first possibility is not good because then b
would lie in K. So it is enough to choose b = x/s in order to obtain b? — b+ s% =0,
meaning that b is a root of the polynomial g(X) = X2 — X +a for a = t/s? and
L=K().

2. Since Gal(L/K) = [L : K| = 2, the only possibility is that we have a cyclic Galois
group of order 2. It is generated by the non-trivial K-automorphism 7 of L, which
sends b to another root of g. But it is clear that b+ 1 is also a root of g(X), so
that 7(1) =1, 7(b) = 1 + b, and

[T]{l,b} = < (1) 1 ) .
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3. First, notice that L; and Lo are both quadratic extensions of K, so that they
coincide if and only if L1 C Lo, if and only if by = Aby + i for some A, € K. This
condition is equivalent (eventually by translating p by 1) to saying that there are
A\, v € K such that \by + p is a root of X? — X + a;. This in turns is equivalent
to saying that for some A, p € K we have

0= N2b2 + u? — Abgy — i+ a1 = N2(by — ag) — Abg + 4% — i+ ay,

where the second equality comes from the hypothesis on bo. By linear indepen-
dence of 1 and by we see that A\> = \, and the only possibility (as b; ¢ K) is that
A=1

This means that Lj = Lo if and only there exists u € K such that /LQ — = as—ay,
as desired.

2. Consider the polynomial f = X3 — 2 € Q[X], and let L be the splitting field of f.

1. Prove that [L : Q] = 6, and find intermediate extensions Lj and Lo of L over @
such that [L; : Q] =2 and [Lg : Q] = 3.

2. Prove that L/Q is a Galois extension with Galois group G = S3 [Hint: The Galois
group of L acts faithfully on the roots of f].

3. Which of the four field extensions L/L; and L;/Q, for i = 1,2 are Galois? Find
their Galois groups.

Solution:

1. Let £ be a primitive third root of unity. Then we have a decomposition
FIX) = (X = V2)(X - £32)(X - €2V2),

so that L = Q(v/2,¢). We have that Ly := Q(+/2) is an intermediate field
extension of L with degree 3 over Q. Moreover, £ € R D Lo, so that L/Ly is non-
trivial. Notice that ¢ satisfies the cyclotomic polynomial X2 + X +1 € Q[X] C
Ls[X], so that [L : L] = 2 necessarily. This implies that [L : Q] = 6. We can also
consider Lj := Q(&) to get an intermediate field extension of degree 2 over Q) as
required.

2. The Galois group G acts faithfully on the 3 roots of f, so that G C S3. But
|G| =[L: Q] =6 =|S3|, so that we need G = Ss.

3. The only non-Galois extension is Lo /@, because the minimal polynomial of /2
does not split in Ly[X]. For the other extensions, separability is always clear,
and normality is immediate for L;/Q and L/Ls which have degree 2, while L/Lq
is normal because there the minimal polynomial of /2 splits completely, and
L = Li(¥/2) by construction.

Since all groups of cardinality 2 and 3 are cyclic, we have Gal(L/L2) = Gal(L,/Q) =
7./27 and Gal(L/L1) = Z/37Z. Notice that indeed we have Autg(Ls) = {id}.
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3. Let K be a field and P € K[X] a separable degree-n irreducible polynomial, L its
splitting field and G = Gal(L/K).

0. Prove that |G| < deg(P)!

From now on, assume that P is a palindromic monic polynomial of even degree, i.e.,
there exist a positive integer d and elements ayq, ..., aq such that

P=X%4 g X% ' qag XM b ag X+ ag X+ X+ 1.

Show that:

1. The set of roots Zp of P is stable under z > %

2. Given the following subgroup of Spy = Sym({a],ay, a3, a5, ... ,a:{, ag}):
Woq = {0 € S| ViTj : o({a], a7 }) = {a] a7 }},

we have that G' can be embedded in W5 4.
3. |G| < 27!

Solution:

0. As seen in class, G acts faithfully on the roots of P. This means that we have
an injection G — Sym(Zp), where Zp denotes the set of roots of P, which has
cardinality deg(P) by separability of P. Then |G| < [Sym(Zp)| = deg(P)! as
desired.

1. One can write P(X) = agX? + Z?;Ol a;(X?4=1 4 X)), with ag := 1. Suppose that
x € Zp. Then P(x) =0, and

d—1 d
1 ) ) 1 . .
P <> = ad{L‘_d + Z ai(:L‘_(Qd_Z) + {L‘_Z) = — <adl‘_d + Z ai(:nz + ZL‘2d_Z))
! =0 v i=0
1

so that Zp is stable under x — %

2. Notice that the inversion map L* — L* sending x +— 1/z is an involution (it
is its own inverse) and has only two fixed points +1. By irreducibility of P,
K > +1¢ Zp, so that Z, = {ml,xfl, e ,:nd,mgl} for some x; € L with x; # ZL';H
for ¢ # j. Then the image of G via the embedding G — Sy4 from part 1 has
to lie inside Wy 4 (here we identify of with xfl for each 7 = 1,...,d and sign
* € {4+, —}), because o(z; ") = o(x;)~" for each i.

3. This just amounts to checking that |Ws 4| = 24d!. Since Wy 4 consists of per-
mutations and the sets of two elements 4; = {a;,a; } are pairwise disjoint for

i =1,...,d, we have that each 0 € Wy 4 defines a unique permutation 7, € Sy

such that 7,(¢) = j if and only if 0(A4;) = A;. Moreover, o defines a d-tuple of
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signs (£4.i), where €, is the sign of a(a;-"). It is easily seen that o can be uniquely

recovered from 7, and the o(a;

(3
defined a bijection

o,

) as o(a;) = aif(i’) . In other words, we have just
Wg,d ;> Sd X {:I:l}d,
and we get |[Wa 4| =[Sy x {£1}9] = |Sy| - [{£1}|¢ = d!2¢ as desired.
4. Let K = Q[v2,V3].

1. Show that K is Galois over Q with Galois group the Z/27 x Z/27Z.

2. Now let L = K {\/(ﬂ—i— 2)(v/3 + 3)|. Show that L is Galois over Q.

Solution:

1. Viewing K as Q(v/3)[X]/(X?% — 2) (resp., as Q(v/2)[X]/(X? — 3)), we see that
V2 = +v2 (resp., V3 — £v/3) define automorphisms of K over Q(v/3) (resp.,
over Q(v/2)), and in particular over ). Hance Autq(K) contains the identity, oo
(which fixes v/3 and changes sign to v/2) and o3 (which fixes v/2 and changes sign
to v/3). Clearly, o3 o 03 is none of the previous Q-automorphisms of K, so that
4 < |Autg(K)| < [K : Q] = 4 (see Exercise 4 from Exercise sheet 1), meaning that
|Autq(K)| = 4 and K/Q is a Galois extension by Exercise 3 of Exercise sheet 3. In
particular, we easily see that 03 = 03 = (0203)% = id, so that G = 7% /27 x 7./27.

2. Letz = \/(\/§ + 2)(v/3 + 3). We will prove that L = K[x]/Q is Galois by checking
that x has a separable minimal polynomial over Q) which splits completely in L.
First, let us check that = ¢ K, so that [L : K] = 2 and [L : Q] = 8. This
amounts to proving that z* = (v2 4 2)(v/3 + 3) is not a square in K, and can
of course be checked directly by imposing an equality (a + bv/2 + ¢v/3 + dv/6)? =
(V2 + 2)(v/3 + 3) with a,b,¢,d € Q and finding a contradiction. Anyway, we can
avoid some computations by considering the map N g( V3 K — Q(V/?2) sending
y +— y-o3(y) (it is a norm map). It is clearly a multiplicative map, so that it
sends squares to squares. In particular, we have that

Niva (@) = (V2+2)(V3+3)(V2+2)(V3-3) =23 (V2 +2)°

is not a square in Q(v/2) since 2- (v/2+2)? is but 3 is not. Then (v/2+2)(v/3+3)
itself cannot be a square in K.

For e,0 € {£1}, let .5 := \/(5\/5 +2)(6v/3 + 3). Then we claim that

fX) = J[ X—n720) € QX].

e,0,y€{£1}

This holds because
je = [ (x2-a2p) €k,

g,0e{£1}
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and the action of Gal(K, Q) permutes the x. s, so that f(X) € KGIEQ)[X] =
Q[X].by Galois correspondence.

This implies that f is the minimal polynomial of z (since [L : Q] = 8 = deg(f) and
x = 1, is easily seen to be such that L = Q3(z)). Then comparing the squares of
two roots and using @-linear independence of 1,/2, /3 and v/6 we immediately
see that the roots are distinct, proving separability of f. To conclude, we need
to check that ya. s € K(x) for each ¢,0,7 € {£1}. The sign v is not important
(as opposites always exist in a field), and clearly z11 = « € K(x). Of course
x.5 € K(x) whenever zz. 5 € K, and this holds in all the remaining cases. Indeed,
we have

.Tx17_1 = (—ﬁ-F 2) -3
zr_11 = (—V3+3)V-2

9
4

(—V2+2V6 e K,
(—V3+3)V2¢eK,

_l’_

_l’_

and

zr_1 1=+ (-2+4)(-3+9) =VI2=2V3 € K.

5. Let L/K be a finite Galois extension. Take x € L and assume that the elements o(x)
are all distinct for o € Gal(L/K). Show: L = K(x).

Solution:

This is a straightforward application of the Galois correspondence. We have that
K C K(x) C L, so that K(x) corresponds to the subgroup H, < G := Gal(L/K)
consisting of those o € G fixing the whole K (z). Such a o would then fix z, and by
hypothesis only Id;, does. Then K(z) = L= = LU9L} = [, and we are done.

Another proof: notice that the minimal polynomial f of x over K needs to have degree
equal to |Gal(L/K)|, because applying the automorphisms of Gal(L/K) we obtain
|Gal(L/K)| distinct roots of f by hypothesis. Then [K(z) : K| = |Gal(L/K)| = [L : K]
implying K (x) = L.



