
D-MATH Algebra I HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 5

1. Let L/K be a finite Galois extension with Galois group G. Fix an algebraic closure K̄
of K containing L and consider an intermediate extension L/E/K.

1. Prove that composition of field homomorphisms induces an action of G on the set
of K-embeddings E −→ K̄.

2. Let τ0 be the inclusion E ↪→ K̄, and take H = StabG(τ0). Prove that H =
Gal(L/E) and deduce that LH = E.

3. Now assume that L is the splitting field of an irreducible separable polynomial
P ∈ K[X], and that E = K(x0) for some root x0 of P . Show that the set of
K-embeddings E −→ K̄ is isomorphic as a G-set to the set ZP of roots of P with
the usual action of G.

Solution:

1. First, notice that each K-embedding τ : E −→ K̄ factors uniquely through the
inclusion i : L ↪→ K̄. This just amounts to checking that L contains the image of
any K-embedding τ : E −→ K̄. For x ∈ E ⊆ L, we easily see that τ(x) is also
a root of the minimal polynomial f of x over K, because f(τ(x)) = τ(f(x)) = 0
since τ fixes all the coefficients of f . Then τ(x) ∈ L by normality of L, proving
that τ factors through i.

If τ : E −→ K̄ is a K-embedding, denote by τ+ the unique K-embedding E −→ L
such that i◦τ+ = τ . By construction, we have (i◦ψ)+ = ψ for each K-embedding
ψ : E −→ L. Now we define the action of G = Gal(L/K) on the set of K-
embeddings E −→ K̄ via σ · τ = i ◦ σ ◦ τ+. Indeed, for each σ1, σ2 ∈ G and each
K-embedding τ : E −→ K̄ we have:

(σ1σ2) · τ = i ◦ (σ1 ◦ σ2) ◦ τ+ = i ◦ σ1 ◦ (σ2 ◦ τ+) = i ◦ σ1 ◦ (i ◦ σ2 ◦ τ+)+

= σ1 · (σ2 · τ), and

idL ·τ = i ◦ τ+ = τ,

so that this is an action of G on the set of K-embeddings E −→ K̄.

2. By definition of the Galois action we gave, for σ ∈ G we have that σ lies in
StabG(τ0) if and only if

i ◦ σ ◦ τ+0 = τ0.

Since the right hand side can be written as i ◦ τ+0 as remarked above and i is
injective, we have that the last condition is equivalent to σ ◦ τ+0 = τ+0 . But τ+0
is just the inclusion E ↪→ L, so that σ lies in StabG(τ0) if and only if it fixes
all the elements of E. This proves that StabG(τ0) = Gal(L/E). Then by Galois
correspondence we get LStabG(τ0) = E.
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3. Let EmbK(E, K̄) the set of K-embeddings E −→ K̄. For E = K(x0), such an
embedding is uniquely determined by the image of x0, which has to be a root of
P = Irr(x0;K). For y ∈ ZP , let τy the K-embedding E −→ K̄ sending x0 7→ y.
This defines a bijection ZP −→ EmbK(E, K̄) sending y 7→ τy. To conclude, we
need to prove that this is a map of G-sets, i.e., that for each y ∈ ZP and σ ∈ G
one has τσ(y) = σ · τy, which is equivalent to τ+σ(y) = σ ◦ τ+y . Since the two sides

consist of K-linear field homomorphisms E = K(x0) −→ L, it is enough to check
their equality on x0, which is straightforward:

(σ ◦ τ+y )(x0) = σ(y) = τ+σ(y)(x0).

2. (*) Let L/K be a finite Galois extension of degree n with Galois group G. For x ∈ L,
let mx be the K-linear map L −→ L sending y 7→ xy. We define the trace and the
norm maps TrL/K ,NL/K : L −→ K as

TrL/K(x) = Tr(mx) and NL/K(x) = det(mx).

[See Exercise sheet 11 from Algebra I, HS14]

1. Let x ∈ L. Denote χx(X) ∈ K[X] the characteristic polynomial of mx, and
dx = [K(x) : K]. Prove: χx = (Irr(x;K))n/d.

2. Show that for each x ∈ L we have

TrL/K(x) =
∑
σ∈G

σ(x) and NL/K(x) =
∏
σ∈G

σ(x).

3. Show that if M/L/K is a tower of Galois extensions, then NM/K = NL/K ◦NM/L.

Notice that the last property in fact holds for any tower of finite extension, but the
proof is more complicated.

Solution:

1. Letm = n/d. We haveK(x) =
⊕d−1

j=0 Kx
j , and we can fix aK(x)-basis {β1, . . . , βm}

of L, so that L has K basis {xjβi} i=1,...,m
j=0,...,d−1

with lexicographical order

β1, xβ1, x
2β1, . . . , x

d−1β1, β2, xβ2, . . . , x
d−1β2, . . . , βm, . . . , x

d−1βm.

Let [cij ]0≤i,j≤d be [mx]K(x)/K , the d × d matrix of the K-linear map y 7→ xy of

K(x), so that for j = 0, . . . , d − 1 we have x · xj =
∑d−1

i=0 cijx
i. Then χK(x)/K,x

be the characteristic polynomial of [cij ]. Then by the Hamilton-Cayley theorem
χK(x)/K,x(mx) is the zero endomorphism of K(x). Since ml

x = mxl and mxl is
K-linear for each non-negative integer l, we easily see that mχK(x)/K,x(x) is the zero

endomorphism of K(x), which means that χK(x)/K,x(x) = 0. Since χK(x)/K,x(X)
is a monic degree-d polynomial with root x, we necessarily have χK(x)/K,x =
Irr(x;K), and we are only left to prove that χx = χmK(x)/K,x.
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To prove this last equality, we use the K-basis {xjβi} of L and notice that x·xjβi =∑d−1
λ=0 cλjx

λβi =
∑d−1

λ=0

∑m
µ=1 cλjδµ,ix

λβi. Then the matrix of mx seen as a K-
endomorphism of L, with respect to the chosen basis, consists of d × d blocks,
which are non-zero only when they are diagonal blocks, in which case they coincide
with [cij ]. This proves that χx = χmK(x)/K,x as desired.

2. We have that
∏
σ∈G(X − σ(x)) lies in LG[X] = K[X] and has x as a root. Notice

that this polynomial may have multiple roots. More precisely, σ(x) = τ(x) if and
only if σH = τH, where H = {σ ∈ G : σ(x) = x} = Gal(L/K(x)). In particular,
|H| = [L : K(x)] = n/d = m, so that by choosing a set of d representatives σH
for G/H, we get∏

σ∈G
(X − σ(x)) =

∏
σH∈G/H

∏
τ∈H

(X − στ(x)) =
∏

σH∈G/H

(X − σ(x))m

=

 ∏
σH∈G/H

(X − σ(x))

m

.

The polynomial
∏
σH∈G/H(X − σ(x)) is also invariant under G, so that it lies

in K[X]. Since it is monic and it has degree d = [K(x) : K], it must coincide
with Irr(x;K). Then by previous point we obtain χx =

∏
σ∈G(X − σ(x)), and by

comparing the coefficients of degree n− 1 and 0 we get

−TrL/K(x) = −
∑
σ∈G

σ(x) and (−1)nNL/K(x) = (−1)n
∏
σ∈G

σ(x),

since the coefficients of degree n − 1 and 0 of χx are, respectively, −Tr(mx) and
(−1)n det(mx). By simplifying a sign, we get the desired descriptions of the trace
and the norm.

3. Let P = Gal(M/K). Then by the Galois correspondence P/H ∼= G, where H =
Gal(M/L), where the isomorphism in induced by the restriction to L of the K-
automorphisms of M . This will motivate the passage (∗) in the coming chain of
equalities. For x ∈M , by previous point we have

(NL/K ◦NM/L)(x) =
∏
τ∈G

τ

(∏
σ∈H

σ(x)

)
(∗)
=

∏
τH∈P/H

τ |L

(∏
σ∈H

σ(x)

)

=
∏

τH∈P/H

∏
σ∈H

τσ(x) =
∏
ξ∈P

ξ(x) = NM/K(x),

where the product on “τH ∈ P/H” takes a set of representatives of cosets of H,
and we have used the fact that the cosets of H form a partition of P .

3. Let L/K be a finite Galois extension with Galois group G.

1. Prove that the action of G on L[X] (as seen in class) extends to an action on the

field of rational functions L(X) via σ ·
(
P
Q

)
= σ(P )

σ(Q) .
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2. Check that L(X)G = K(X).

Solution:

1. We need to check that σ ·
(
P
Q

)
= σ(P )

σ(Q) gives indeed a well defined map L(X) −→
L(X) for each σ ∈ G. Suppose that P/Q = P ′/Q′. Then PQ′ −QP ′ = 0, and

σ ·
(
P

Q

)
− σ ·

(
P ′

Q′

)
=
σ(P )

σ(Q)
− σ(P ′)

σ(Q′)
=
σ(P )σ(Q′)− σ(Q)σ(P ′)

σ(Q)σ(Q′)
=

=
σ(PQ′ −QP ′)

σ(QQ′)
=

σ(0)

σ(QQ′)
= 0,

because σ· respects sums and multiplication on L[X]. Hence the map is well-
defined. The axioms of group action for G on L(X) follow immediately from the
corresponding axioms for the action of G on L[X].

2. It is clear that K(X) ⊆ L(X)G. Conversely, assume that P/Q ∈ L(X)G, and,
without loss of generality, that P and Q are coprime polynomials in L(X), with
Q monic. Then for each σ we have

σ(P )

σ(Q)
=
P

Q
,

and the only possibility is that σ(P ) = fσ · P , σ(Q) = fσ ·Q for some fσ ∈ L[X],
because (P,Q) = 1. As σ does not change the degree of the polynomials on which
it acts, we actually have that fσ ∈ L. Moreover, σ fixes the leading coefficient of
Q (which is 1 ∈ K), so that the only possibility is fσ = 1. Then P,Q ∈ L[X]G =
LG[X] = K[X], so that indeed P/Q ∈ K(X).

4. For any field K, we consider the projective line

P(K) := (K2 \ {0})/ ∼,

where (a, b) ∼ (c, d) if there exists λ ∈ K× such that (c, d) = (aλ, bλ).

1. Check that ∼ is indeed an equivalence relation.

2. Prove that for any field extension L/K the map (x, y) 7→ (x, y) induces an injection
j : P(K) ↪→ P(L).

From now on, assume that L/K is a finite Galois extension with Galois group G.

3. Prove that σ · (a, b) = (σ(a), σ(b)) gives a well-defined action of G on P(L).

4. Check that P(L)G is the image of P(K) via the injection j.

Solution:
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1. Reflexivity of ∼ is clear (by taking λ = 1). Now suppose that (c, d) ∼ (a, b), with
(c, d) = (aλ, bλ) for some λ ∈ K×. Then (a, b) = (aλ 1

λ , bλ
1
λ) = ( 1

λc,
1
λd), so that

(a, b) ∼ (c, d) proving symmetry (we used the fact that λ ∈ K× is invertible).

Now assume that (a, b) ∼ (c, d) ∼ (e, f) with (e, f) = (λc, λd) and (c, d) = (µa, µb)
for some λ, µ ∈ K×. Then (e, f) = (λµa, λµb), and λµ 6= 0, giving (a, b) ∼ (e, f),
which proves transitivity.

2. To avoid confusion, we call ∼K (resp., ∼L) the equivalence relation defined on
K2\{0} (resp., L2\{0}). We have clearly an inclusion (K2\{0}) ↪→ (L2\{0}) (via
(x, y) 7→ (x, y)), which induces a well defined map j : P(K) −→ P(K), because if
(a, b) ∼K (c, d), then (a, b) ∼L (c, d) since K× ⊆ L×. To prove that j is injective
amounts to checking that whenever (a, b) ∼L (c, d) for (a, b), (c, d) ∈ (K2 \ {0}),
then actually (a, b) ∼K (c, d). This is immediate, since (a, b) ∼L (c, d) implies
that c = λa and d = λb for λ ∈ L×, and since one out of a and b is non-zero - by
simplicity, suppose a - we get λ = c/a ∈ K ∩ L× = K×.

3. Since automorphisms of L are injective, they never send a non-zero element to
zero, so that G acts on L2 \ {0} via σ · (x, y) = (σ(x), σ(y)). To prove that this
gives an action on P(L), we need to check independence from ∼L. Suppose that
σ ∈ G, and that (c, d) = (λa, λb) ∈ (L2 \ {0}) for some λ ∈ L×. Then

σ · (c, d) = (σ(λa), σ(λb)) = (σ(λ)σ(a), σ(λ)σ(b)) ∼L (σ(a), σ(b)) = σ · (a, b),

and σ· is a well-defined map P(L) −→ P(L). The axioms of group action follow
immediately from the definition.

4. An element in j(P(K)) has a representative of the form (a, b) with a, b ∈ K not
simultaneously zero. It is clear that G acts trivially on such a representative, so
that j(P(K)) ⊆ P(L)G.

Conversely, assume that (α, β) represents an element in P(L) which is fixed by any
σ ∈ G. If α = 0, then β ∈ L×, and multiplication by the scalar β−1 gives (α, β) =
(0, β) ∼L (0, 1), which represents j([(0, 1)]∼K ). Else α 6= 0, and multiplication by
the scalar α−1 gives (α, β) ∼L (1, α−1β). Since each σ ∈ G fixes this class, we
have (1, α−1β) ∼L (1, σ(α−1β)), and the only possible scalar factor is 1, so that
α−1β ∈ LG = K, and (α, β) represents a class in P(L) lying in the image of j.

5. Let f ∈ Q[X] be a monic polynomial of degree n > 2, and Lf its splitting field over
Q. Let Gf = Gal(L/K), and suppose that the inclusion Gf ↪→ Sn is an isomorphism.

1. Show that f is irreducible over Q

2. Given a root α of f , prove that the only automorphism of the field Q(α) is the
identity.

Solution:

1. Suppose that f factors as f = gh, and consider the extension of splitting fields
Lf/Lg/Q and Lf/Lh/Q. We need |Zf | = n (because G ≤ SZ(f)), whence sepa-
rability. We have a partition Zf = Zg ∪ Zh. Let d = deg(g). Since Lf/Q, Lg/Q
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and Lh/Q are all normal extensions, we have that Gal(Lf/Q)/Gal(Lf/Lg) ∼=
Gal(Lg/Q) (and similarly for h) via restriction of automorphisms. In particular,
automorphisms of Lf restrict to automorphisms of Lg and Lh, so that they per-
mute the roots of g and the roots of h separately. Then the image of G via the
embedding in Sn is contained in Sd × Sn−d, and the only possibility is that d = 0
or n− d = 0, so that f = gh is a trivial decomposition. Hence f is irreducible.

2. We claim thatQ(α) cannot contain other roots of f . From this claim, we automat-
ically get that Aut(Q(α)) = AutQ(Q(α)) = {idQ(α)}, because an automorphism
of Q(α) should send α to a root of f lying Q(α).

We are then only left to prove that Q(α) does not contain other roots of f . By
previous point, f is the minimal polynomial of α, so that [Q(α) : Q] = n. Let
g = f/(X − α) ∈ Q(α)[X]. Then Gal(Lf/Q(α)) = [Lf : Q(α)] = (n − 1)!, and
Lf is the splitting field of g over Q(α). The Galois group Gal(Lf/Q(α)) fixes
all the roots of g lying in Q(α), and if by contradiction there are t > 0 such
roots, then the image of this Galois group via the embedding in Sn−1 lies inside
S1 × · · · × S1 × Sn−t, where S1 appears t times. But this is impossible, since
|Gal(Lf/Q(α))| = (n− 1)!.


