Solutions of exercise sheet 5

1. Let L / K be a finite Galois extension with Galois group G. Fix an algebraic closure \bar{K} of K containing L and consider an intermediate extension $L / E / K$.
2. Prove that composition of field homomorphisms induces an action of G on the set of K-embeddings $E \longrightarrow \bar{K}$.
3. Let τ_{0} be the inclusion $E \hookrightarrow \bar{K}$, and take $H=\operatorname{Stab}_{G}\left(\tau_{0}\right)$. Prove that $H=$ $\operatorname{Gal}(L / E)$ and deduce that $L^{H}=E$.
4. Now assume that L is the splitting field of an irreducible separable polynomial $P \in K[X]$, and that $E=K\left(x_{0}\right)$ for some root x_{0} of P. Show that the set of K-embeddings $E \longrightarrow \bar{K}$ is isomorphic as a G-set to the set Z_{P} of roots of P with the usual action of G.

Solution:

1. First, notice that each K-embedding $\tau: E \longrightarrow \bar{K}$ factors uniquely through the inclusion $i: L \hookrightarrow \bar{K}$. This just amounts to checking that L contains the image of any K-embedding $\tau: E \longrightarrow \bar{K}$. For $x \in E \subseteq L$, we easily see that $\tau(x)$ is also a root of the minimal polynomial f of x over K, because $f(\tau(x))=\tau(f(x))=0$ since τ fixes all the coefficients of f. Then $\tau(x) \in L$ by normality of L, proving that τ factors through i.
If $\tau: E \longrightarrow \bar{K}$ is a K-embedding, denote by τ^{+}the unique K-embedding $E \longrightarrow L$ such that $i \circ \tau^{+}=\tau$. By construction, we have $(i \circ \psi)^{+}=\psi$ for each K-embedding $\psi: E \longrightarrow L$. Now we define the action of $G=\operatorname{Gal}(L / K)$ on the set of $K-$ embeddings $E \longrightarrow \bar{K}$ via $\sigma \cdot \tau=i \circ \sigma \circ \tau^{+}$. Indeed, for each $\sigma_{1}, \sigma_{2} \in G$ and each K-embedding $\tau: E \longrightarrow \bar{K}$ we have:

$$
\begin{aligned}
\left(\sigma_{1} \sigma_{2}\right) \cdot \tau & =i \circ\left(\sigma_{1} \circ \sigma_{2}\right) \circ \tau^{+}=i \circ \sigma_{1} \circ\left(\sigma_{2} \circ \tau^{+}\right)=i \circ \sigma_{1} \circ\left(i \circ \sigma_{2} \circ \tau^{+}\right)^{+} \\
& =\sigma_{1} \cdot\left(\sigma_{2} \cdot \tau\right), \text { and } \\
\operatorname{id}_{L} \cdot \tau & =i \circ \tau^{+}=\tau,
\end{aligned}
$$

so that this is an action of G on the set of K-embeddings $E \longrightarrow \bar{K}$.
2. By definition of the Galois action we gave, for $\sigma \in G$ we have that σ lies in $\operatorname{Stab}_{G}\left(\tau_{0}\right)$ if and only if

$$
i \circ \sigma \circ \tau_{0}^{+}=\tau_{0} .
$$

Since the right hand side can be written as $i \circ \tau_{0}^{+}$as remarked above and i is injective, we have that the last condition is equivalent to $\sigma \circ \tau_{0}^{+}=\tau_{0}^{+}$. But τ_{0}^{+} is just the inclusion $E \hookrightarrow L$, so that σ lies in $\operatorname{Stab}_{G}\left(\tau_{0}\right)$ if and only if it fixes all the elements of E. This proves that $\operatorname{Stab}_{G}\left(\tau_{0}\right)=\operatorname{Gal}(L / E)$. Then by Galois correspondence we get $L^{\operatorname{Stab}_{G}\left(\tau_{0}\right)}=E$.
3. Let $\operatorname{Emb}_{K}(E, \bar{K})$ the set of K-embeddings $E \longrightarrow \bar{K}$. For $E=K\left(x_{0}\right)$, such an embedding is uniquely determined by the image of x_{0}, which has to be a root of $P=\operatorname{Irr}\left(x_{0} ; K\right)$. For $y \in Z_{P}$, let τ_{y} the K-embedding $E \longrightarrow \bar{K}$ sending $x_{0} \mapsto y$. This defines a bijection $Z_{P} \longrightarrow \operatorname{Emb}_{K}(E, \bar{K})$ sending $y \mapsto \tau_{y}$. To conclude, we need to prove that this is a map of G-sets, i.e., that for each $y \in Z_{P}$ and $\sigma \in G$ one has $\tau_{\sigma(y)}=\sigma \cdot \tau_{y}$, which is equivalent to $\tau_{\sigma(y)}^{+}=\sigma \circ \tau_{y}^{+}$. Since the two sides consist of K-linear field homomorphisms $E=K\left(x_{0}\right) \longrightarrow L$, it is enough to check their equality on x_{0}, which is straightforward:

$$
\left(\sigma \circ \tau_{y}^{+}\right)\left(x_{0}\right)=\sigma(y)=\tau_{\sigma(y)}^{+}\left(x_{0}\right)
$$

2. (*) Let L / K be a finite Galois extension of degree n with Galois group G. For $x \in L$, let m_{x} be the K-linear map $L \longrightarrow L$ sending $y \mapsto x y$. We define the trace and the norm maps $\operatorname{Tr}_{L / K}, \mathrm{~N}_{L / K}: L \longrightarrow K$ as

$$
\operatorname{Tr}_{L / K}(x)=\operatorname{Tr}\left(m_{x}\right) \text { and } \mathrm{N}_{L / K}(x)=\operatorname{det}\left(m_{x}\right)
$$

[See Exercise sheet 11 from Algebra I, HS14]

1. Let $x \in L$. Denote $\chi_{x}(X) \in K[X]$ the characteristic polynomial of m_{x}, and $d_{x}=[K(x): K]$. Prove: $\chi_{x}=(\operatorname{Irr}(x ; K))^{n / d}$.
2. Show that for each $x \in L$ we have

$$
\operatorname{Tr}_{L / K}(x)=\sum_{\sigma \in G} \sigma(x) \quad \text { and } \quad \mathrm{N}_{L / K}(x)=\prod_{\sigma \in G} \sigma(x)
$$

3. Show that if $M / L / K$ is a tower of Galois extensions, then $\mathrm{N}_{M / K}=\mathrm{N}_{L / K} \circ \mathrm{~N}_{M / L}$.

Notice that the last property in fact holds for any tower of finite extension, but the proof is more complicated.

Solution:

1. Let $m=n / d$. We have $K(x)=\bigoplus_{j=0}^{d-1} K x^{j}$, and we can fix a $K(x)$-basis $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ of L, so that L has K basis $\left\{x^{j} \beta_{i}\right\}_{i=1, \ldots, m}$ with lexicographical order

$$
\beta_{1}, x \beta_{1}, x^{2} \beta_{1}, \ldots, x^{d-1} \beta_{1}, \beta_{2}, x \beta_{2}, \ldots, x^{d-1} \beta_{2}, \ldots, \beta_{m}, \ldots, x^{d-1} \beta_{m}
$$

Let $\left[c_{i j}\right]_{0 \leq i, j \leq d}$ be $\left[m_{x}\right]_{K(x) / K}$, the $d \times d$ matrix of the K-linear map $y \mapsto x y$ of $K(x)$, so that for $j=0, \ldots, d-1$ we have $x \cdot x_{j}=\sum_{i=0}^{d-1} c_{i j} x^{i}$. Then $\chi_{K(x) / K, x}$ be the characteristic polynomial of $\left[c_{i j}\right]$. Then by the Hamilton-Cayley theorem $\chi_{K(x) / K, x}\left(m_{x}\right)$ is the zero endomorphism of $K(x)$. Since $m_{x}^{l}=m_{x^{l}}$ and $m_{x^{l}}$ is K-linear for each non-negative integer l, we easily see that $m_{\chi_{K(x) / K, x}(x)}$ is the zero endomorphism of $K(x)$, which means that $\chi_{K(x) / K, x}(x)=0$. Since $\chi_{K(x) / K, x}(X)$ is a monic degree- d polynomial with root x, we necessarily have $\chi_{K(x) / K, x}=$ $\operatorname{Irr}(x ; K)$, and we are only left to prove that $\chi_{x}=\chi_{K(x) / K, x}^{m}$.

To prove this last equality, we use the K-basis $\left\{x^{j} \beta_{i}\right\}$ of L and notice that $x \cdot x_{j} \beta_{i}=$ $\sum_{\lambda=0}^{d-1} c_{\lambda j} x^{\lambda} \beta_{i}=\sum_{\lambda=0}^{d-1} \sum_{\mu=1}^{m} c_{\lambda j} \delta_{\mu, i} x^{\lambda} \beta_{i}$. Then the matrix of m_{x} seen as a $K-$ endomorphism of L, with respect to the chosen basis, consists of $d \times d$ blocks, which are non-zero only when they are diagonal blocks, in which case they coincide with $\left[c_{i j}\right]$. This proves that $\chi_{x}=\chi_{K(x) / K, x}^{m}$ as desired.
2. We have that $\prod_{\sigma \in G}(X-\sigma(x))$ lies in $L^{G}[X]=K[X]$ and has x as a root. Notice that this polynomial may have multiple roots. More precisely, $\sigma(x)=\tau(x)$ if and only if $\sigma H=\tau H$, where $H=\{\sigma \in G: \sigma(x)=x\}=\operatorname{Gal}(L / K(x))$. In particular, $|H|=[L: K(x)]=n / d=m$, so that by choosing a set of d representatives σH for G / H, we get

$$
\begin{aligned}
\prod_{\sigma \in G}(X-\sigma(x)) & =\prod_{\sigma H \in G / H} \prod_{\tau \in H}(X-\sigma \tau(x))=\prod_{\sigma H \in G / H}(X-\sigma(x))^{m} \\
& =\left(\prod_{\sigma H \in G / H}(X-\sigma(x))\right)^{m} .
\end{aligned}
$$

The polynomial $\prod_{\sigma H \in G / H}(X-\sigma(x))$ is also invariant under G, so that it lies in $K[X]$. Since it is monic and it has degree $d=[K(x): K]$, it must coincide with $\operatorname{Irr}(x ; K)$. Then by previous point we obtain $\chi_{x}=\prod_{\sigma \in G}(X-\sigma(x))$, and by comparing the coefficients of degree $n-1$ and 0 we get

$$
-\operatorname{Tr}_{L / K}(x)=-\sum_{\sigma \in G} \sigma(x) \quad \text { and } \quad(-1)^{n} \mathrm{~N}_{L / K}(x)=(-1)^{n} \prod_{\sigma \in G} \sigma(x),
$$

since the coefficients of degree $n-1$ and 0 of χ_{x} are, respectively, $-\operatorname{Tr}\left(m_{x}\right)$ and $(-1)^{n} \operatorname{det}\left(m_{x}\right)$. By simplifying a sign, we get the desired descriptions of the trace and the norm.
3. Let $P=\operatorname{Gal}(M / K)$. Then by the Galois correspondence $P / H \cong G$, where $H=$ $\operatorname{Gal}(M / L)$, where the isomorphism in induced by the restriction to L of the K automorphisms of M. This will motivate the passage ($*$) in the coming chain of equalities. For $x \in M$, by previous point we have

$$
\begin{aligned}
\left(\mathrm{N}_{L / K} \circ \mathrm{~N}_{M / L}\right)(x) & =\left.\prod_{\tau \in G} \tau\left(\prod_{\sigma \in H} \sigma(x)\right) \stackrel{(*)}{=} \prod_{\tau H \in P / H} \tau\right|_{L}\left(\prod_{\sigma \in H} \sigma(x)\right) \\
& =\prod_{\tau H \in P / H} \prod_{\sigma \in H} \tau \sigma(x)=\prod_{\xi \in P} \xi(x)=\mathrm{N}_{M / K}(x),
\end{aligned}
$$

where the product on " $\tau H \in P / H$ " takes a set of representatives of cosets of H, and we have used the fact that the cosets of H form a partition of P.
3. Let L / K be a finite Galois extension with Galois group G.

1. Prove that the action of G on $L[X]$ (as seen in class) extends to an action on the field of rational functions $L(X)$ via $\sigma \cdot\left(\frac{P}{Q}\right)=\frac{\sigma(P)}{\sigma(Q)}$.
2. Check that $L(X)^{G}=K(X)$.

Solution:

1. We need to check that $\sigma \cdot\left(\frac{P}{Q}\right)=\frac{\sigma(P)}{\sigma(Q)}$ gives indeed a well defined map $L(X) \longrightarrow$ $L(X)$ for each $\sigma \in G$. Suppose that $P / Q=P^{\prime} / Q^{\prime}$. Then $P Q^{\prime}-Q P^{\prime}=0$, and

$$
\begin{aligned}
\sigma \cdot\left(\frac{P}{Q}\right)-\sigma \cdot\left(\frac{P^{\prime}}{Q^{\prime}}\right) & =\frac{\sigma(P)}{\sigma(Q)}-\frac{\sigma\left(P^{\prime}\right)}{\sigma\left(Q^{\prime}\right)}=\frac{\sigma(P) \sigma\left(Q^{\prime}\right)-\sigma(Q) \sigma\left(P^{\prime}\right)}{\sigma(Q) \sigma\left(Q^{\prime}\right)}= \\
& =\frac{\sigma\left(P Q^{\prime}-Q P^{\prime}\right)}{\sigma\left(Q Q^{\prime}\right)}=\frac{\sigma(0)}{\sigma\left(Q Q^{\prime}\right)}=0,
\end{aligned}
$$

because σ respects sums and multiplication on $L[X]$. Hence the map is welldefined. The axioms of group action for G on $L(X)$ follow immediately from the corresponding axioms for the action of G on $L[X]$.
2. It is clear that $K(X) \subseteq L(X)^{G}$. Conversely, assume that $P / Q \in L(X)^{G}$, and, without loss of generality, that P and Q are coprime polynomials in $L(X)$, with Q monic. Then for each σ we have

$$
\frac{\sigma(P)}{\sigma(Q)}=\frac{P}{Q}
$$

and the only possibility is that $\sigma(P)=f_{\sigma} \cdot P, \sigma(Q)=f_{\sigma} \cdot Q$ for some $f_{\sigma} \in L[X]$, because $(P, Q)=1$. As σ does not change the degree of the polynomials on which it acts, we actually have that $f_{\sigma} \in L$. Moreover, σ fixes the leading coefficient of Q (which is $1 \in K$), so that the only possibility is $f_{\sigma}=1$. Then $P, Q \in L[X]^{G}=$ $L^{G}[X]=K[X]$, so that indeed $P / Q \in K(X)$.
4. For any field K, we consider the projective line

$$
\mathbb{P}(K):=\left(K^{2} \backslash\{0\}\right) / \sim,
$$

where $(a, b) \sim(c, d)$ if there exists $\lambda \in K^{\times}$such that $(c, d)=(a \lambda, b \lambda)$.

1. Check that \sim is indeed an equivalence relation.
2. Prove that for any field extension L / K the map $(x, y) \mapsto(x, y)$ induces an injection $j: \mathbb{P}(K) \hookrightarrow \mathbb{P}(L)$.

From now on, assume that L / K is a finite Galois extension with Galois group G.
3. Prove that $\sigma \cdot(a, b)=(\sigma(a), \sigma(b))$ gives a well-defined action of G on $\mathbb{P}(L)$.
4. Check that $\mathbb{P}(L)^{G}$ is the image of $\mathbb{P}(K)$ via the injection j.

Solution:

1. Reflexivity of \sim is clear (by taking $\lambda=1$). Now suppose that $(c, d) \sim(a, b)$, with $(c, d)=(a \lambda, b \lambda)$ for some $\lambda \in K^{\times}$. Then $(a, b)=\left(a \lambda \frac{1}{\lambda}, b \lambda \frac{1}{\lambda}\right)=\left(\frac{1}{\lambda} c, \frac{1}{\lambda} d\right)$, so that (a, b) $\sim(c, d)$ proving symmetry (we used the fact that $\lambda \in K^{\times}$is invertible).
Now assume that $(a, b) \sim(c, d) \sim(e, f)$ with $(e, f)=(\lambda c, \lambda d)$ and $(c, d)=(\mu a, \mu b)$ for some $\lambda, \mu \in K^{\times}$. Then $(e, f)=(\lambda \mu a, \lambda \mu b)$, and $\lambda \mu \neq 0$, giving $(a, b) \sim(e, f)$, which proves transitivity.
2. To avoid confusion, we call \sim_{K} (resp., \sim_{L}) the equivalence relation defined on $K^{2} \backslash\{0\}$ (resp., $L^{2} \backslash\{0\}$). We have clearly an inclusion $\left(K^{2} \backslash\{0\}\right) \hookrightarrow\left(L^{2} \backslash\{0\}\right)$ (via $(x, y) \mapsto(x, y)$), which induces a well defined map $j: \mathbb{P}(K) \longrightarrow \mathbb{P}(K)$, because if $(a, b) \sim_{K}(c, d)$, then $(a, b) \sim_{L}(c, d)$ since $K^{\times} \subseteq L^{\times}$. To prove that j is injective amounts to checking that whenever $(a, b) \sim_{L}(c, d)$ for $(a, b),(c, d) \in\left(K^{2} \backslash\{0\}\right)$, then actually $(a, b) \sim_{K}(c, d)$. This is immediate, since $(a, b) \sim_{L}(c, d)$ implies that $c=\lambda a$ and $d=\lambda b$ for $\lambda \in L^{\times}$, and since one out of a and b is non-zero - by simplicity, suppose a - we get $\lambda=c / a \in K \cap L^{\times}=K^{\times}$.
3. Since automorphisms of L are injective, they never send a non-zero element to zero, so that G acts on $L^{2} \backslash\{0\}$ via $\sigma \cdot(x, y)=(\sigma(x), \sigma(y))$. To prove that this gives an action on $\mathbb{P}(L)$, we need to check independence from \sim_{L}. Suppose that $\sigma \in G$, and that $(c, d)=(\lambda a, \lambda b) \in\left(L^{2} \backslash\{0\}\right)$ for some $\lambda \in L^{\times}$. Then

$$
\sigma \cdot(c, d)=(\sigma(\lambda a), \sigma(\lambda b))=(\sigma(\lambda) \sigma(a), \sigma(\lambda) \sigma(b)) \sim_{L}(\sigma(a), \sigma(b))=\sigma \cdot(a, b),
$$

and σ. is a well-defined map $\mathbb{P}(L) \longrightarrow \mathbb{P}(L)$. The axioms of group action follow immediately from the definition.
4. An element in $j(\mathbb{P}(K))$ has a representative of the form (a, b) with $a, b \in K$ not simultaneously zero. It is clear that G acts trivially on such a representative, so that $j(\mathbb{P}(K)) \subseteq \mathbb{P}(L)^{G}$.
Conversely, assume that (α, β) represents an element in $\mathbb{P}(L)$ which is fixed by any $\sigma \in G$. If $\alpha=0$, then $\beta \in L^{\times}$, and multiplication by the scalar β^{-1} gives $(\alpha, \beta)=$ $(0, \beta) \sim_{L}(0,1)$, which represents $j\left([(0,1)]_{\sim_{K}}\right)$. Else $\alpha \neq 0$, and multiplication by the scalar α^{-1} gives $(\alpha, \beta) \sim_{L}\left(1, \alpha^{-1} \beta\right)$. Since each $\sigma \in G$ fixes this class, we have $\left(1, \alpha^{-1} \beta\right) \sim_{L}\left(1, \sigma\left(\alpha^{-1} \beta\right)\right)$, and the only possible scalar factor is 1 , so that $\alpha^{-1} \beta \in L^{G}=K$, and (α, β) represents a class in $\mathbb{P}(L)$ lying in the image of j.
5. Let $f \in \mathbb{Q}[X]$ be a monic polynomial of degree $n>2$, and L_{f} its splitting field over \mathbb{Q}. Let $G_{f}=\operatorname{Gal}(L / K)$, and suppose that the inclusion $G_{f} \hookrightarrow S_{n}$ is an isomorphism.

1. Show that f is irreducible over \mathbb{Q}
2. Given a root α of f, prove that the only automorphism of the field $\mathbb{Q}(\alpha)$ is the identity.

Solution:

1. Suppose that f factors as $f=g h$, and consider the extension of splitting fields $L_{f} / L_{g} / \mathbb{Q}$ and $L_{f} / L_{h} / \mathbb{Q}$. We need $\left|Z_{f}\right|=n$ (because $G \leq S_{Z(f)}$), whence separability. We have a partition $Z_{f}=Z_{g} \cup Z_{h}$. Let $d=\operatorname{deg}(g)$. Since $L_{f} / \mathbb{Q}, L_{g} / \mathbb{Q}$
and L_{h} / \mathbb{Q} are all normal extensions, we have that $\operatorname{Gal}\left(L_{f} / \mathbb{Q}\right) / \operatorname{Gal}\left(L_{f} / L_{g}\right) \cong$ $\operatorname{Gal}\left(L_{g} / \mathbb{Q}\right)$ (and similarly for h) via restriction of automorphisms. In particular, automorphisms of L_{f} restrict to automorphisms of L_{g} and L_{h}, so that they permute the roots of g and the roots of h separately. Then the image of G via the embedding in S_{n} is contained in $S_{d} \times S_{n-d}$, and the only possibility is that $d=0$ or $n-d=0$, so that $f=g h$ is a trivial decomposition. Hence f is irreducible.
2. We claim that $\mathbb{Q}(\alpha)$ cannot contain other roots of f. From this claim, we automatically get that $\operatorname{Aut}(\mathbb{Q}(\alpha))=\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\alpha))=\left\{\operatorname{id}_{\mathbb{Q}(\alpha)}\right\}$, because an automorphism of $\mathbb{Q}(\alpha)$ should send α to a root of f lying $\mathbb{Q}(\alpha)$.
We are then only left to prove that $\mathbb{Q}(\alpha)$ does not contain other roots of f. By previous point, f is the minimal polynomial of α, so that $[\mathbb{Q}(\alpha): \mathbb{Q}]=n$. Let $g=f /(X-\alpha) \in \mathbb{Q}(\alpha)[X]$. Then $\operatorname{Gal}\left(L_{f} / \mathbb{Q}(\alpha)\right)=\left[L_{f}: \mathbb{Q}(\alpha)\right]=(n-1)!$, and L_{f} is the splitting field of g over $\mathbb{Q}(\alpha)$. The Galois group $\operatorname{Gal}\left(L_{f} / \mathbb{Q}(\alpha)\right)$ fixes all the roots of g lying in $\mathbb{Q}(\alpha)$, and if by contradiction there are $t>0$ such roots, then the image of this Galois group via the embedding in S_{n-1} lies inside $S_{1} \times \cdots \times S_{1} \times S_{n-t}$, where S_{1} appears t times. But this is impossible, since $\left|\operatorname{Gal}\left(L_{f} / \mathbb{Q}(\alpha)\right)\right|=(n-1)!$.
