Exercise sheet 6

1. (Irreducibility of the cyclotomic polynomial) Let n be a positive integer, and $P \in \mathbb{Z}[X]$ a monic irreducible factor of $X^{n}-1 \in \mathbb{Q}[X]$. Suppose that ξ is a root of P.
2. Show that for each $k \in \mathbb{Z}_{\geq 0}$ there exists a unique polynomial $R_{k} \in \mathbb{Z}[X]$ such that $\operatorname{deg}\left(R_{k}\right)<\operatorname{deg}(P)$ and $\bar{P}\left(\xi^{k}\right)=R_{k}(\xi)$. Prove that $\left\{R_{k} \mid k \in \mathbb{Z}_{\geq 0}\right\}$ is a finite set. We define

$$
a:=\sup \left\{|u|: u \text { is a coefficient of some } R_{k}\right\}
$$

2. Show that for $k=p$ a prime, p divides all coefficients of R_{p}, and that when $p>a$ one has $R_{p}=0\left[\right.$ Hint: $\left.P\left(\xi^{p}\right)=P\left(\xi^{p}\right)-P(\xi)^{p}\right]$.
3. Deduce that if all primes dividing some positive integer m are strictly greater then a, then $P\left(\xi^{m}\right)=0$.
4. Prove that if r and n are coprime, then $P\left(\xi^{r}\right)=0$ [Hint: Consider the quantity $\left.m=r+n \prod_{p \leq a, p \nmid r} p\right]$.
5. Recall the definition of n-th cyclotomic polynomial Φ_{n} for $n \in \mathbb{Z}_{>0}$: we take $W_{n} \subseteq \mathbb{C}$ to be the set of primitive n-th roots of unity, and define

$$
\Phi_{n}(X):=\prod_{x \in W_{n}}(X-x) .
$$

Prove the following equality for $n \in \mathbb{Z}_{>0}$:

$$
\prod_{0<d \mid n} \Phi_{d}(X)=X^{n}-1
$$

and deduce that $\Phi_{n} \in \mathbb{Z}[X]$ for every n.
6. Prove that the n-th cyclotomic polynomial is irreducible. [Hint: Take $\xi:=$ $\exp (2 \pi i / n)$ and P its minimal polynomial over \mathbb{Q}. Check that P satisfies the required hypothesis to deduce that $\Phi_{n}(X) \mid P$ (using Points 1-4). Then irreducibility of P together with Point 5 allow you to conclude.]
2. Let $f(X)=X^{3}-3 X+1 \in \mathbb{Q}[X]$, and $\alpha \in \overline{\mathbb{Q}}$ be a root of f. Define $K=\mathbb{Q}(\alpha)$.

1. Check that f is irreducible in $\mathbb{Q}[X]$.
2. Prove that f splits over K, and deduce that K / \mathbb{Q} is Galois with group $\mathbb{Z} / 3 \mathbb{Z}$. [Hint: Factor f over $\mathbb{Q}(\alpha)$ as $f=(x-\alpha) g$, and solve g, observing that $12-3 \alpha^{2}=$ $\left.\left(-4+\alpha+2 \alpha^{2}\right)^{2}\right]$
3. Deduce, without computation, that the discriminant of f is a square in \mathbb{Q}^{\times}. Then check this by using the formula of the discriminant $\Delta=-4 a^{3}-27 b^{2}$ for a cubic polynomial of the form $X^{3}+a X+b$.
4. Let n be a positive integer. Prove that the symmetric group S_{n} is generated by the cycle ($12 \cdots n$) and τ, where τ is any transposition.
5. Let $f \in \mathbb{Q}[X]$ be an irreducible polynomial of prime degree p, and suppose that it has precisely 2 non-real roots. Let L_{f} be the splitting field of f, and $G:=\operatorname{Gal}\left(L_{f} / \mathbb{Q}\right)$. Recall that the action of G on the roots of f gives an injective group homomorphism $G \hookrightarrow S_{p}$, and call H the image of G via this injection.
6. Notice that the complex conjugation is a \mathbb{Q}-automorphism of L_{f}, and deduce that H contains a transposition.
7. Show that p divides the order of G, and that G contains an element of order p [Hint: Use First Sylow Theorem. See Exercise 7 from Exercise Sheet 5 of the HS14 course Algebra I].
8. Conclude that $H=S_{p}$ [Hint: Previous exercise].

Use this to show that the Galois group of the splitting field of $f(X)=X^{5}-4 X+2 \in$ $\mathbb{Q}[X]$ is S_{5}. [You have to check that f is irreducible and has precisely 2 non-real roots.]

