Algebra II

Exercise sheet 6

- 1. (Irreducibility of the cyclotomic polynomial) Let n be a positive integer, and $P \in \mathbb{Z}[X]$ a monic irreducible factor of $X^n 1 \in \mathbb{Q}[X]$. Suppose that ξ is a root of P.
 - 1. Show that for each $k \in \mathbb{Z}_{\geq 0}$ there exists a unique polynomial $R_k \in \mathbb{Z}[X]$ such that $\deg(R_k) < \deg(P)$ and $P(\xi^k) = R_k(\xi)$. Prove that $\{R_k | k \in \mathbb{Z}_{\geq 0}\}$ is a finite set. We define

 $a := \sup\{|u| : u \text{ is a coefficient of some } R_k\}$

- 2. Show that for k = p a prime, p divides all coefficients of R_p , and that when p > a one has $R_p = 0$ [*Hint:* $P(\xi^p) = P(\xi^p) P(\xi)^p$].
- 3. Deduce that if all primes dividing some positive integer m are strictly greater then a, then $P(\xi^m) = 0$.
- 4. Prove that if r and n are coprime, then $P(\xi^r) = 0$ [*Hint:* Consider the quantity $m = r + n \prod_{p \le a, p \nmid r} p$].
- 5. Recall the definition of *n*-th cyclotomic polynomial Φ_n for $n \in \mathbb{Z}_{>0}$: we take $W_n \subseteq \mathbb{C}$ to be the set of primitive *n*-th roots of unity, and define

$$\Phi_n(X) := \prod_{x \in W_n} (X - x).$$

Prove the following equality for $n \in \mathbb{Z}_{>0}$:

$$\prod_{0 < d \mid n} \Phi_d(X) = X^n - 1,$$

and deduce that $\Phi_n \in \mathbb{Z}[X]$ for every n.

- 6. Prove that the *n*-th cyclotomic polynomial is irreducible. [*Hint:* Take $\xi := \exp(2\pi i/n)$ and *P* its minimal polynomial over \mathbb{Q} . Check that *P* satisfies the required hypothesis to deduce that $\Phi_n(X)|P$ (using Points 1-4). Then irreducibility of *P* together with Point 5 allow you to conclude.]
- **2.** Let $f(X) = X^3 3X + 1 \in \mathbb{Q}[X]$, and $\alpha \in \overline{\mathbb{Q}}$ be a root of f. Define $K = \mathbb{Q}(\alpha)$.
 - 1. Check that f is irreducible in $\mathbb{Q}[X]$.
 - 2. Prove that f splits over K, and deduce that K/\mathbb{Q} is Galois with group $\mathbb{Z}/3\mathbb{Z}$. [*Hint:* Factor f over $\mathbb{Q}(\alpha)$ as $f = (x - \alpha)g$, and solve g, observing that $12 - 3\alpha^2 = (-4 + \alpha + 2\alpha^2)^2$]

- 3. Deduce, without computation, that the discriminant of f is a square in \mathbb{Q}^{\times} . Then check this by using the formula of the discriminant $\Delta = -4a^3 27b^2$ for a cubic polynomial of the form $X^3 + aX + b$.
- **3.** Let *n* be a positive integer. Prove that the symmetric group S_n is generated by the cycle $(1 \ 2 \ \cdots \ n)$ and τ , where τ is any transposition.
- 4. Let $f \in \mathbb{Q}[X]$ be an irreducible polynomial of prime degree p, and suppose that it has precisely 2 non-real roots. Let L_f be the splitting field of f, and $G := \operatorname{Gal}(L_f/\mathbb{Q})$. Recall that the action of G on the roots of f gives an injective group homomorphism $G \hookrightarrow S_p$, and call H the image of G via this injection.
 - 1. Notice that the complex conjugation is a Q-automorphism of L_f , and deduce that H contains a transposition.
 - 2. Show that p divides the order of G, and that G contains an element of order p [*Hint:* Use First Sylow Theorem. See Exercise 7 from Exercise Sheet 5 of the HS14 course Algebra I].
 - 3. Conclude that $H = S_p$ [*Hint:* Previous exercise].

Use this to show that the Galois group of the splitting field of $f(X) = X^5 - 4X + 2 \in \mathbb{Q}[X]$ is S_5 . [You have to check that f is irreducible and has precisely 2 non-real roots.]