## Solutions of exercise sheet 6

1. (Irreducibility of the cyclotomic polynomial) Let $n$ be a positive integer, and $P \in \mathbb{Z}[X]$ a monic irreducible factor of $X^{n}-1 \in \mathbb{Q}[X]$. Suppose that $\xi$ is a root of $P$.
2. Show that for each $k \in \mathbb{Z}_{\geq 0}$ there exists a unique polynomial $R_{k} \in \mathbb{Z}[X]$ such that $\operatorname{deg}\left(R_{k}\right)<\operatorname{deg}(P)$ and $P\left(\xi^{k}\right)=R_{k}(\xi)$. Prove that $\left\{R_{k} \mid k \in \mathbb{Z}_{\geq 0}\right\}$ is a finite set. We define

$$
a:=\sup \left\{|u|: u \text { is a coefficient of some } R_{k}\right\}
$$

2. Show that for $k=p$ a prime, $p$ divides all coefficients of $R_{p}$, and that when $p>a$ one has $R_{p}=0\left[\right.$ Hint: $\left.P\left(\xi^{p}\right)=P\left(\xi^{p}\right)-P(\xi)^{p}\right]$.
3. Deduce that if all primes dividing some positive integer $m$ are strictly greater then $a$, then $P\left(\xi^{m}\right)=0$.
4. Prove that if $r$ and $n$ are coprime, then $P\left(\xi^{r}\right)=0$ [Hint: Consider the quantity $\left.m=r+n \prod_{p \leq a, p \nmid r} p\right]$.
5. Recall the definition of $n$-th cyclotomic polynomial $\Phi_{n}$ for $n \in \mathbb{Z}_{>0}$ : we take $W_{n} \subseteq \mathbb{C}$ to be the set of primitive $n$-th roots of unity, and define

$$
\Phi_{n}(X):=\prod_{x \in W_{n}}(X-x) .
$$

Prove the following equality for $n \in \mathbb{Z}_{>0}$ :

$$
\prod_{0<d \mid n} \Phi_{d}(X)=X^{n}-1
$$

and deduce that $\Phi_{n} \in \mathbb{Z}[X]$ for every $n$.
6. Prove that the $n$-th cyclotomic polynomial is irreducible. [Hint: Take $\xi:=$ $\exp (2 \pi i / n)$ and $P$ its minimal polynomial over $\mathbb{Q}$. Check that $P$ satisfies the required hypothesis to deduce that $\Phi_{n}(X) \mid P$ (using Points 1-4). Then irreducibility of $P$ together with Point 5 allow you to conclude.]

Solution: Recall that for a monic polynomial $f \in \mathbb{Z}[X]$ we know that $f$ is irreducible in $\mathbb{Z}[X]$ if and only if it is irreducible in $\mathbb{Q}[X]$ (see the Gauss's Lemma, in the solution of Exercise Sheet 11 of Algebra I, HS 2014).

1. Since $P$ is monic and irreducible in $\mathbb{Z}[X]$, it is also irreducible in $\mathbb{Q}[X]$, so that $\mathbb{Q}(\xi) \cong \mathbb{Q}[X] /(P(X))$ is an algebraic extension of $\mathbb{Q}$ of degree $\operatorname{deg}(P)$, and the elements $1, \xi, \ldots, \xi^{\operatorname{deg}(P)}$ are linearly independent. Then $P\left(\xi^{k}\right) \in \mathbb{Q}(\xi)$ cannot be expressed in more then one way as $P\left(\xi^{k}\right)=R_{k}(\xi)$ with $R_{k} \in \mathbb{Z}[X]$ of degree
$<\operatorname{deg}(P)$, and we only have to check existence. This is a special case of proving that for each $f \in \mathbb{Z}[X]$ we have $f(\xi)=b_{0}+b_{1} \xi+\cdots+b_{\operatorname{deg}(P)-1} \xi^{\operatorname{deg}(P)-1}$ for some $b_{i} \in \mathbb{Z}$, which is easily proven by induction on $\operatorname{deg}(f)$ : the statement is trivial for all $\operatorname{deg}(f)<\operatorname{deg}(P)$; for bigger degree, we see that the degree of $f$ can be lowered (up to equivalence modulo $P$ ) by substituting the maximal power $X^{\operatorname{deg}(P)+a}$ of $X$ in $f$ with $X^{a}\left(X^{\operatorname{deg}(P)}-P(X)\right.$ ), which has degree strictly smaller then $\operatorname{deg}(P)+a$ as $P$ is monic, so that the inductive hypothesis can be applied. [More simply, one can notice that $\mathbb{Z}[X]$ is a unique factorization domain, and that Euclidean division of $f$ by $P$ can be performed (as in $\mathbb{Q}[X]$ ), so that $R_{k}(X)$ is nothing but the residue of the division of $R\left(X^{k}\right)$ by $P(X)$.]
Since $\xi^{k}=\xi^{h}$ for $n \mid k-h$, the set $\left\{\xi^{k}: k \in \mathbb{Z}_{\geq 0}\right\}$ is finite, and so is the set of the $R_{k}$ 's.
2. Notice that for $f \in \mathbb{Z}[X]$ one has that $f\left(X^{p}\right)-f(X)^{p}$ is divisible by $p$. Indeed, we write $f=\sum_{j=0}^{s} \lambda_{j} X^{j}$ and consider the multinomial coefficient for a partition into positive integers $t=\sum_{i} t_{i}$ :

$$
(*)\binom{t}{t_{1}, \ldots, t_{s}}=\frac{t!}{t_{1}!\cdots t_{s}!}=\binom{t}{t_{1}}\binom{t-t_{1}}{t_{2}}\binom{t-t_{1}-t_{2}}{t_{3}} \cdots\binom{t_{s-1}+t_{s}}{t_{s-1}} \in \mathbb{Z}
$$

which counts the number of partitions of a set of $t$ elements into subsets of $t_{1}, t_{2}, \ldots, t_{s}$ elements, and we have

$$
\begin{aligned}
f\left(X^{p}\right)-f(X)^{p} & =\sum_{j=0}^{s} \lambda_{j} X^{j p}-\sum_{\substack{e_{0}+\ldots+e_{j}=p \\
0 \leq e_{j} \leq p}}\binom{p}{e_{0}, \ldots, e_{s}} \prod_{j}^{s}\left(\lambda_{j}\right)^{e_{j}} X^{j e_{j}} \\
& =\sum_{j=0}^{s}\left(\lambda_{j}-\lambda_{j}^{p}\right) X^{j p}-\sum_{\substack{e_{0}+\ldots+e_{j}=p \\
0 \leq e_{j}<p}}\binom{p}{e_{0}, \ldots, e_{s}} \prod_{j=0}^{s}\left(\lambda_{j}\right)^{e_{j}} X^{j e_{j}} .
\end{aligned}
$$

By Fermat's little theorem we have $p \mid \lambda_{j}-\lambda_{j}^{p}$ for each $j$. Moreover, each multinomial coefficient appearing in the second sum is divisible by $p$, because the definition in terms of factorials in (*) makes it clear that none of the $e_{j}$ has $p$ as a factor, so that $p$ does not cancel out while simplifying the fraction, which belongs to $\mathbb{Z}$. Hence $p \mid f\left(X^{p}\right)-f(X)^{p}$.
We can then write $P\left(\xi^{p}\right)=P\left(\xi^{p}\right)-P(\xi)^{p}=p Q(\xi)$ for some $Q(X) \in \mathbb{Z}[X]$, and by what we proved in the previous point we can write $Q(\xi)=R_{Q}(\xi)$ for some polynomial $R_{Q} \in \mathbb{Z}[X]$ of degree strictly smaller than $\operatorname{deg}(P)$. This gives $R_{p}(\xi)=P\left(\xi^{p}\right)=p R_{Q}(\xi)$, and by uniqueness of $R_{p}$ we can conclude that $R_{p}=$ $p R_{Q} \in p \mathbb{Z}[X]$.
If $p>a$, then the absolute values of the coefficients of $R_{p}$ are non-negative multiples of $p$, and by definition of $a$ they need to be zero, so that $R_{p}=0$ in this case.
3. This is an easy induction on the number $s$ of primes (counted with multiplicity) dividing $m$. One can indeed write $m=\prod_{i=1}^{s} p_{i}$ for some primes $p_{i}>a$. For $s=1$ this is just the previous point, because $R_{p_{1}}=0$ means $P\left(\xi^{p_{1}}\right)=0$. More
in general, by inductive hypothesis we can assume that $P\left(\xi^{p_{1} \cdots p_{s-1}}\right)=0$, and apply the previous point with $\xi^{p_{1} \cdots p_{s-1}}$ (which is a root of $P$ ) instead of $\xi$ to get $P\left(\left(\xi^{p_{1} \cdots p_{s-1}}\right)^{p_{s}}\right)=0$.
4. Let $m=r+n \prod_{p \leq a, p r r} p$. For $q \leq a$ a prime, we see that $q$ either divides $r$ or $n \prod_{p \leq a, p \nmid r} p$, so that $q$ does not divide $m$ and by previous point we get $P\left(\xi^{m}\right)=0$. But $\xi^{n}=1$ by hypothesis (because $P \mid X^{n}-1$ ), so that $\xi^{m}=\xi^{r}$ and we get $P\left(\xi^{r}\right)=0$.
5. Let $\gamma_{n}=\prod_{0<d \mid n} \Phi_{d}$. Since a complex number belongs to $W_{k}$ if and only if it has multiplicative order $k$, all the $W_{k}$ 's are disjoint. Then $\gamma_{n}$ has distinct roots, and its set of roots is $\cup_{0<d \mid n} W_{d}$. On the other hand, the roots of $X^{n}-1$ are also all distinct: they are indeed the $n$ distinct complex numbers $\exp (2 \pi i k / n)$ for $a=0, \ldots, n-1$. It is then easy to see that the two polynomials have indeed the same roots, since a $n$-th root of unity has order $d$ dividing $n$, and primitive $d$-th roots of unity are $n$-th roots of unity for $d \mid n$. As both $\gamma_{n}$ and $\Phi_{n}$ are monic, unique factorization in $\mathbb{Q}[X]$ gives $\gamma_{n}=\Phi_{n}$ as desired.
We then prove that the coefficients of the $\Phi_{n}$ are integer by induction on $n$. For $n=1$ we have $\Phi_{n}=X-1 \in \mathbb{Z}[X]$. For $n>1$, suppose that $\Phi_{k} \in \mathbb{Z}[X]$ for all $k<n$. Then

$$
\Phi_{n}=\frac{X^{n}-1}{\prod_{\substack{0<d \mid n \\ d \neq n}} \Phi_{d}(X)},
$$

and since the denominator lies in $\mathbb{Z}[X]$ by inductive hypothesis, we can conclude that $\Phi_{n} \in \mathbb{Z}[X]$. Indeed, $\Phi_{n}$ needs necessarily to lie in $\mathbb{Q}[X]$ (else, for $l$ the minimal degree of a coefficient of $\Phi_{n}$ not lying in $\mathbb{Q}$ and $m$ the minimal degree of a non-zero coefficients of the denominator, one would get that the coefficient of degree $l+m$ in $X^{n}-1$ would not lie in $\mathbb{Q}$, contradiction). We can then write the monic polynomial $\Phi_{n}$ as $\frac{1}{\mu} \Theta_{n}$ for some primitive polynomial $\Theta_{n} \in \mathbb{Z}[X]$, but then Gauss's Lemma (see the solution of Exercise Sheet 11 of Algebra I, HS 2014) tells us that $X^{n}-1$ equals $\frac{1}{d}$ times a primitive polynomial, and the only possibility is $d= \pm 1$, which implies that $\Phi_{n} \in \mathbb{Z}[X]$.
6. $\xi=\exp (2 \pi i / n)$ satisfies both its minimal polynomial $P$ and $X^{n}-1$, so that $P \mid X^{n}-1$. Being $X^{n}-1$ and $P$ monic we necessarily have $P \in \mathbb{Z}[X]$ by Gauss's lemma. Then $W_{n}=\left\{\xi^{r}: 0<r<n,(r, n)=1\right\}$, so that by point 4 we get $P(x)=0$ for each $x \in W_{n}$ and by definition of $\Phi_{n}$ we obtain $\Phi_{n} \mid P$. This is a divisibility relation between two polynomials in $\mathbb{Q}[X]$, hence an equality as $P$ is irreducible in $\mathbb{Q}[X]$. In particular, the cyclotomic polynomial $\Phi_{n}$ is itself irreducible.
2. Let $f(X)=X^{3}-3 X+1 \in \mathbb{Q}[X]$, and $\alpha \in \overline{\mathbb{Q}}$ be a root of $f$. Define $K=\mathbb{Q}(\alpha)$.

1. Check that $f$ is irreducible in $\mathbb{Q}[X]$.
2. Prove that $f$ splits over $K$, and deduce that $K / \mathbb{Q}$ is Galois with group $\mathbb{Z} / 3 \mathbb{Z}$. [Hint: Factor $f$ over $\mathbb{Q}(\alpha)$ as $f=(X-\alpha) g$, and solve $g$, observing that $12-3 \alpha^{2}=$ $\left.\left(-4+\alpha+2 \alpha^{2}\right)^{2}\right]$
3. Deduce, without computation, that the discriminant of $f$ is a square in $\mathbb{Q}^{\times}$. Then check this by using the formula of the discriminant $\Delta=-4 a^{3}-27 b^{2}$ for a cubic polynomial of the form $X^{3}+a X+b$.

## Solution:

1. $f$ is irreducible in $\mathbb{Q}[X]$ if and only if it has no root in $\mathbb{Q}$. By Gauss's lemma, such a root would actually lie in $\mathbb{Z}$ as $f$ is monic, so that it would divide the constant term 1. But $f(1)=1-3+1=-1$, while $f(-1)=-1+3+1=3$, so that $f$ has no integer root and is irreducible.
2. Let $g(X)=X^{2}+a X+b \in K(\alpha)$ be such that $f=(X-\alpha) g(X)$. Then equalizing the coefficients in degree 2 and 1 we get $a=\alpha$ and $b=\alpha^{2}-3$, so that $g(X)=$ $X^{2}+\alpha X+\left(\alpha^{2}-3\right)$. Then

$$
\begin{aligned}
g(X) & =\left(X+\frac{\alpha}{2}\right)^{2}-\frac{1}{4}\left(12-3 \alpha^{2}\right)=\left(X+\frac{\alpha}{2}\right)^{2}-\left(\frac{1}{2}\left(-4+\alpha+2 \alpha^{2}\right)\right)^{2} \\
& =\left(X+\frac{\alpha}{2}+\frac{1}{2}\left(-4+\alpha+2 \alpha^{2}\right)\right) \cdot\left(X+\frac{\alpha}{2}-\frac{1}{2}\left(-4+\alpha+2 \alpha^{2}\right)\right),
\end{aligned}
$$

Then $f$ splits in $K$ which is its splitting field over $\mathbb{Q}$ and as such is Galois (the polynomial $f$ is separable because the roots of $g$ are distinct and they are different from $\alpha$ ) of degree 3 , so that its Galois group is $\mathbb{Z} / 3 \mathbb{Z}$ (which is the only group with 3 elements up to isomorphism).
3. Via the action on the roots of $f$, the Galois group is embedded in $S_{3}$. Since the only subgroup of $S_{3}$ containing 3 elements is $A_{3}$, the image of $\operatorname{Gal}(K / \mathbb{Q})$ in $S_{3}$ via this embedding is $A_{3}$, and the discriminant of $f$ is a square in $\mathbb{Q}^{\times}$as seen in class.
Using the given formula we see indeed that $\Delta=+4 \cdot 27-27=3 \cdot 27=9^{2} \in \mathbb{Q}^{\times}$.
3. Let $n$ be a positive integer. Prove that the symmetric group $S_{n}$ is generated by the cycle ( $12 \cdots n$ ) and $\tau=(a b)$, if $b-a$ is coprime with $n$.

Solution: Without loss of generality, assume that $b>a$. Then $\left\langle\sigma^{b-a}\right\rangle=\langle\sigma\rangle$ by hypothesis, so that $\langle\sigma,(a b)\rangle=\left\langle\sigma^{b-a},(a b)\right\rangle$ and since $\sigma^{b-a}(a)=b$, up to renaming the elements permuted by $S_{n}$ we can assume without loss of generality that $(a b)=\left(\begin{array}{ll}1 & 2\end{array}\right)$.

It is easily seen that for each transposition $(\alpha \beta)$ and permutation $\gamma$ one has $\gamma(\alpha \beta) \gamma^{-1}=$ $(\gamma(\alpha) \gamma(\beta))$. Then $\sigma^{k}(12) \sigma^{-k}=(k+1 k+2)$ for each $0 \leq k \leq n-2$, so that $\langle\sigma,(12)\rangle$ contains all the transpositions $(k k+1)$ for $1 \leq k \leq n-1$.

We now prove that $\langle\sigma,(12)\rangle=\langle\sigma,(12),(23), \ldots,(n-1 n)\rangle$ contains all transpositions. Each permutation can be written as $(\alpha \beta)$ with $\beta>\alpha$, and we work by induction on $\beta-\alpha$, the case $\beta-\alpha=1$ being trivial. Suppose that we have proven that all permutations between two elements whose difference is strictly smaller then $\beta-\alpha$ do
 $(\beta-1 \beta)(\alpha \beta-1)(\beta-1 \beta)=(\alpha \beta) \in\langle\sigma,(12)\rangle$ by inductive hypothesis.

## See next page!

To conclude, we just have to notice that the set of all transpositions generates $S_{n}$, since every permutation can be written as a product of disjoint cycles, and a cycle $\left(a_{1} a_{2} \ldots a_{t}\right)$ can be written as $\left(a_{1} a_{t}\right)\left(a_{1} a_{t-1}\right) \cdots\left(a_{1} a_{2}\right)$
4. Let $f \in \mathbb{Q}[X]$ be an irreducible polynomial of prime degree $p$, and suppose that it has precisely 2 non-real roots. Let $L_{f}$ be the splitting field of $f$, and $G:=\operatorname{Gal}\left(L_{f} / \mathbb{Q}\right)$. Recall that the action of $G$ on the roots of $f$ gives an injective group homomorphism $G \hookrightarrow S_{p}$, and call $H$ the image of $G$ via this injection.

1. Notice that the complex conjugation is a $\mathbb{Q}$-automorphism of $L_{f}$, and deduce that $H$ contains a transposition.
2. Show that $p$ divides the order of $G$, and that $G$ contains an element of order $p$ [Hint: Use First Sylow Theorem. See Exercise 7 from Exercise Sheet 5 of the HS14 course Algebra I].
3. Conclude that $H=S_{p}$ [Hint: Previous exercise].

Use this to show that the Galois group of the splitting field of $f(X)=X^{5}-4 X+2 \in$ $\mathbb{Q}[X]$ is $S_{5}$. [You have to check that $f$ is irreducible and has precisely 2 non-real roots.]

## Solution:

1. Decomposing a complex number into real and imaginary part $z=x+i y$ one easily checks that $z \mapsto \bar{z}$ respects sum and multiplication, and fixes 0 and 1 , so that it is a field automorphism of $\mathbb{C}$ (bijectivity is immediate from the fact that it is its own inverse). Moreover, conjugates of roots of $f \in \mathbb{Q}$ are still roots of $f$ (since $f(\bar{x})=\overline{f(x)})$, so that complex conjugation restricts to an automorphism of $L_{f}$. Since it only interchanges the 2 non-real roots, its image in $H$ is a transposition.
2. For $x$ any root of $f$, we have that $p=\operatorname{deg}(f)=[\mathbb{Q}(x): \mathbb{Q}]\left|\left[L_{f}: \mathbb{Q}\right]=|G|\right.$ by multiplicativity of the degree in towers of extensions, so that $p$ divides the order of $G$. Then by the First Sylow Theorem $G$ has a $p$-subgroup, and given a non-trivial element $g$ of this subgroup has order $p^{a}$ for some positive $a$. Then $g^{p^{a-1}} \in G$ has order $p$.
3. The image of the element of order $p$ via the embedding in $S_{p}$ is a $p$-cycle, and up to reordering the roots we can assume it is the cycle $\left(\begin{array}{ll}1 & \cdots p\end{array}\right) \in H$. The transposition in $H$ from Point 1 can be written as $(a b)$ for some $a, b \in\{1, \ldots, p\}$, and clearly $b-a$ is coprime with $p$, so that we can apply the previous Exercise to get that $H=S_{p}$.

The polynomial $f(X)=X^{5}-4 X+2$ has prime degree $p=5$, and is irreducible by Eisenstein's criterion. We have $\frac{d}{d X} f(X)=5 X^{4}-4$, and this derivative is positive when evaluated on $x \in \mathbb{R}$ if and only if $|x| \geq \sqrt[4]{\frac{4}{5}}$, so that $f$, viewed as a function $\mathbb{R} \longrightarrow \mathbb{R}$,
has stationary points $\pm \sqrt[4]{\frac{4}{5}}$. The negative is a maximum, the positive is a minimum. Evaluating the function there we get

$$
\begin{aligned}
f\left(\sqrt[4]{-\frac{4}{5}}\right) & =-\frac{4}{5}\left(\frac{4}{5}-4\right)+2>0 \\
f\left(\sqrt[4]{\frac{4}{5}}\right) & =\frac{4}{5}\left(\frac{4}{5}-4\right)+2<0
\end{aligned}
$$

Then $f$ is easily seen to have three real zeroes (two smaller than $\frac{4}{5}$ and one bigger), so that it has precisely 2 non-real roots and we are in position to apply what we proved and conclude that the Galois group of $L_{f}$ is $S_{5}$.

