Exercise sheet 8

1. In this exercise, we will give a characterization for solvable groups using commutator subgroups. See last semester's (Algebra I, HS 2014) Exercise Sheet 3, Exercise 6, for the definition and some properties of the commutator subgroup.
2. Let G be a group and $G_{1} \unlhd G$ a normal subgroup such that G / G_{1} is abelian. Show that

$$
[G, G] \subseteq G_{1}
$$

2. Deduce that G is solvable if and only if there exists $m \geq 1$ such that $G^{(m)}=\{1\}$, where the $G^{(m)}$ are subgroups defined inductively via

$$
\begin{aligned}
G^{(0)} & =G \\
G^{(i+1)} & =\left[G^{(i)}, G^{(i)}\right] .
\end{aligned}
$$

2. 3. Show that S_{3} and S_{4} are solvable groups.
1. Show that the group A_{5} is generated by the two permutations (12)(34) and (135).
2. Show that $\left[S_{5}, S_{5}\right]=A_{5}$ and deduce that the group S_{5} is not solvable.
3. Let K be a field and consider the group

$$
B_{2}=\left\{\left.\left(\begin{array}{cc}
a & x \\
0 & b
\end{array}\right) \right\rvert\, a, b \in K^{\times}, x \in K\right\} \leq \operatorname{GL}_{2}(K)
$$

Show that

$$
\left[B_{2}, B_{2}\right]=\left\{\left.\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) \right\rvert\, x \in K\right\}
$$

Can you find a generalization to the subgroup B_{n} of upper-triangular matrices in $\mathrm{GL}_{n}(K)$, for $n \geq 2$?
4. (Gauss's Lemma) Let R be a UFD and $K=\operatorname{Frac}(R)$. We say that the elements $a_{1}, \ldots, a_{n} \in R$ are coprime if whenever $u \mid a_{i}$ for each i, then $u \in R^{\times}$. We call a nonzero polynomial $p \in R[X]$ primitive if its coefficients are coprime. Prove the following statements:

1. Each irreducible element in R (i.e., a non-zero non-unit in R which cannot be written as product of two non-units) is prime in R (i.e., whenever it divides a product $b c$, then it divides b or c).
2. If $a, b \in R$ are coprime and $b \mid a c$ for some $c \in R$, then $b \mid c$.
3. Any element $\lambda \in K$ can be written as a quotient $\lambda=a / b$, with $a, b \in R$ coprime elements.
4. The product of two primitive polynomials $p, q \in R[X]$ is a primitive polynomial. [Hint: For d an irreducible element, notice that there is an isomorphism of rings $R[X] / d R[X] \cong(R / d R)[X]$, and deduce that $R[X] / d R[X]$ is an integral domain. $]$
5. If $f \in R[X]$ can be factored as $f=g h$ with $g, h \in K[X]$, then there exist $g^{\prime}, h^{\prime} \in$ $R[X]$ such that $f=g^{\prime} h^{\prime}$ and $g=\lambda g^{\prime}$ for some $\lambda \in K$. [Hint: Prove that one can write $g=\gamma \cdot G$ for some $\gamma \in K$ and $G \in R[X]$ primitive polynomial. You main need to use the three previous points.]
6. A polynomial $f \in R[X]$ is irreducible in $R[X]$ if and only if it is primitive and it is irreducible in $K[X]$.

The last three statements are usually referred to as Gauss's Lemma.

