Exercise sheet 9

1. Let G be a solvable group, and H a subgroup of G, not necessarily normal. Prove that H is solvable.
2. The aim of this exercise is to explain Cardan's formula for solutions of a degree-3 polynomial equation.

Let K be a field of characteristic 0 and $P \in K[X]$ be an irreducible degree 3 polynomial. Denote by L the splitting field of P, and assume that $\operatorname{Gal}(L / K)=S_{3}$. Up to a change of variable, we can assume that $P(X)=X^{3}+p X+q$. Then one can find that the discriminant of P is $\Delta=-4 p^{3}-27 q^{2}$.

1. Show that Δ is not a square in K, and that $[L: K(\Delta)]=3$.
2. Let μ_{3} be the group of cubic roots of 1 in \bar{K}. Show that $L\left(\mu_{3}\right) / K\left(\sqrt{\Delta}, \mu_{3}\right)$ is a Galois extension of degree 3. Deduce that $\operatorname{Gal}\left(L\left(\mu_{3}\right) / K\left(\sqrt{\Delta}, \mu_{3}\right)\right) \cong \mathbb{Z} / 3 \mathbb{Z}$. [Hint: $\left[K\left(\sqrt{\Delta}, \mu_{3}\right): K(\sqrt{\Delta})\right] \leq 2$.]
3. Let σ be a generator of $\operatorname{Gal}\left(L\left(\mu_{3}\right) / K\left(\sqrt{\Delta}, \mu_{3}\right)\right) \cong \mathbb{Z} / 3 \mathbb{Z}$, and x a root of P in L. Prove that the set of roots of P in L is $\left\{x, \sigma(x), \sigma^{2}(x)\right\}$.
4. Let $\xi \in \bar{K}$ be a primitive cubic root of unity, and consider the Lagrange resolvents

$$
\begin{aligned}
\alpha & :=x+\xi \sigma(x)+\xi^{2} \sigma^{2}(x) \\
\beta & :=x+\xi^{2} \sigma(x)+\xi \sigma^{2}(x) .
\end{aligned}
$$

Prove that $x, \sigma(x), \sigma^{2}(x)$ can be expressed in terms of α and β. Deduce that α and β are non-zero and that $L\left(\mu_{3}\right)=K\left(\sqrt{\Delta}, \mu_{3}, \alpha\right)$. [Hint: $x+\sigma(x)+\sigma^{2}(x)=0$. Use linear systems.]
5. Explain why α^{3} and β^{3} belong to $K\left(\sqrt{\Delta}, \mu_{3}\right)$. Why does this allow to solve the cubic in principle?
6. From now on denote the three roots of P as x_{1}, x_{2} and x_{3}. Consider $D=\left(x_{1}-\right.$ $\left.x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)$, so that $D^{2}=\Delta$. Define also

$$
\begin{aligned}
A & :=x_{1}^{2} x_{2}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1} \\
B & :=x_{1} x_{2}^{2}+x_{2} x_{3}^{2}+x_{3} x_{1}^{2} .
\end{aligned}
$$

Prove the following equalities

$$
\alpha^{3}=-9 q+3 \xi A+3 \xi^{2} B, \quad \beta^{3}=-9 q+3 \xi^{2} A+3 \xi B
$$

Find A, B in terms of D and use this to find α and β. [Hint: See Chambert-Loir, A field guide to algebra, page 121, for further hints.]

