Algebra II

Exercise sheet 9

- 1. Let G be a solvable group, and H a subgroup of G, not necessarily normal. Prove that H is solvable.
- 2. The aim of this exercise is to explain Cardan's formula for solutions of a degree-3 polynomial equation.

Let K be a field of characteristic 0 and $P \in K[X]$ be an irreducible degree 3 polynomial. Denote by L the splitting field of P, and assume that $\operatorname{Gal}(L/K) = S_3$. Up to a change of variable, we can assume that $P(X) = X^3 + pX + q$. Then one can find that the discriminant of P is $\Delta = -4p^3 - 27q^2$.

- 1. Show that Δ is not a square in K, and that $[L: K(\Delta)] = 3$.
- 2. Let μ_3 be the group of cubic roots of 1 in \overline{K} . Show that $L(\mu_3)/K(\sqrt{\Delta}, \mu_3)$ is a Galois extension of degree 3. Deduce that $\operatorname{Gal}(L(\mu_3)/K(\sqrt{\Delta}, \mu_3)) \cong \mathbb{Z}/3\mathbb{Z}$. [Hint: $[K(\sqrt{\Delta}, \mu_3) : K(\sqrt{\Delta})] \leq 2$.]
- 3. Let σ be a generator of $\operatorname{Gal}(L(\mu_3)/K(\sqrt{\Delta},\mu_3)) \cong \mathbb{Z}/3\mathbb{Z}$, and x a root of P in L. Prove that the set of roots of P in L is $\{x, \sigma(x), \sigma^2(x)\}$.
- 4. Let $\xi \in \overline{K}$ be a primitive cubic root of unity, and consider the Lagrange resolvents

$$\alpha := x + \xi \sigma(x) + \xi^2 \sigma^2(x)$$

$$\beta := x + \xi^2 \sigma(x) + \xi \sigma^2(x).$$

Prove that $x, \sigma(x), \sigma^2(x)$ can be expressed in terms of α and β . Deduce that α and β are non-zero and that $L(\mu_3) = K(\sqrt{\Delta}, \mu_3, \alpha)$. [*Hint:* $x + \sigma(x) + \sigma^2(x) = 0$. Use linear systems.]

- 5. Explain why α^3 and β^3 belong to $K(\sqrt{\Delta}, \mu_3)$. Why does this allow to solve the cubic in principle?
- 6. From now on denote the three roots of P as x_1, x_2 and x_3 . Consider $D = (x_1 x_2)(x_1 x_3)(x_2 x_3)$, so that $D^2 = \Delta$. Define also

$$A := x_1^2 x_2 + x_2^2 x_3 + x_3^2 x_1$$
$$B := x_1 x_2^2 + x_2 x_3^2 + x_3 x_1^2.$$

Prove the following equalities

$$\alpha^3 = -9q + 3\xi A + 3\xi^2 B, \ \ \beta^3 = -9q + 3\xi^2 A + 3\xi B$$

Find A, B in terms of D and use this to find α and β . [*Hint:* See Chambert-Loir, A field guide to algebra, page 121, for further hints.]