Applied Stochastic Processes

Exercise Sheet 4

Please hand in by 12:00 on Tuesday 24.03.2015 in the assistant's box in front of HG E 65.1

Exercise 4.1

Waiting queue paradox. Let $(N_t)_{t\geq 0}$ be a homogenous Poisson process with intensity λ . We define the following random variables (with $S_0 = 0$):

- $\gamma_t = S_{N_t+1} t$ (Waiting time for the next jump) $\delta_t = t - S_{N_t}$ (Passed time since the last jump or the point in time 0) $\beta_t = \gamma_t + \delta_t$
- (a) Determine the distribution of the random variables γ_t and δ_t .
- (b) Determine the joint distribution of γ_t and δ_t and explain the result.
- (c) Compute the distribution of the random variable β_t .
- (d) Compute $E[\beta_t]$ and $\lim_{t\to\infty} E[\beta_t]$. Compare the expectation of β_t with the interarrival times T_i . Give an interpretation of your results.

Exercise 4.2

Let $(N_t)_{t\geq 0}$ be an inhomogeneous Poisson process with $N_0 = 0$ and rate $\rho(t) = \alpha t$, where α is a positive constant. Let

$$W_n := \inf\{t > 0 : N_t = n\}, \quad n = 1, 2, \dots$$

Determine the distribution of W_n and the joint distribution of $W_1, W_2 - W_1$.

Exercise 4.3

Largest gap in a Poisson process. Let $(N_t)_{t\geq 0}$ be a homogeneous Poisson process with parameter $\lambda > 0$. The largest gap up to time t is defined as

$$L_t = \max_{k \ge 1} (S_k \wedge t - S_{k-1} \wedge t).$$

In this exercise we are going to show that \mathbb{P} -almost surely

$$\limsup_{t \to \infty} \frac{L_t}{\log t} \le \lambda^{-1}$$

(a) Let $\varepsilon > 0$. Use Borel-Cantelli's lemma to show that \mathbb{P} -almost surely

$$\max_{1 \le k \le n} T_k \le \frac{1+\varepsilon}{\lambda} \log(n/\lambda)$$

for n large enough, where the T_k denote the inter-arrival times of the process.

(b) Show that $\mathbb P\text{-almost surely}$

$$N_t + 1 \le (1 + \varepsilon)t\lambda$$

for large t enough.

(c) Conclude that \mathbb{P} -almost surely $\limsup_{t\to\infty} \frac{L_t}{\log t} \leq \lambda^{-1}$.