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Solution 1.1

(a) We assumed that the moment generating function of X exists and is �nite on an open
neighbourhood I of 0. This implies that X is �nite outside of a P-null set.
Let t ∈ I. Then, there exists a positive ε such that the open ball with center t and radius
3ε and the open ball with center 0 and radius 2ε are contained in I.

We �rst want to prove that (t, ω) 7→ X(ω)etX(ω) is integrable on [t− ε, t+ ε] × Ω. By
Fubini-Tonelli's theorem, it su�ces to show that the successive integrations yield a �nite
value.

We prove that for t ∈ I, XetX is integrable, and without loss of generality, we assume that
t > 0 (the case where t 6 0 is treated similarly). We have,∣∣XetX

∣∣ 6 (X+ +X−
)

etX
+

6 X+etX
+

+X−

6
1
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+
1
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eεX

−

6
1

ε
e(t+ε)X +

1

ε
1 (X 6 0) +

1

ε
e−εX +

1

ε
1 (X > 0) ,

where we de�ne X+ = max{X, 0} and X− = max{−X, 0} so that X = X+ − X−. We
used that for x > 0, we have x 6 ex. This shows that

∣∣XetX
∣∣ is integrable on Ω for every

t in I.

We now prove that t 7→ E
[∣∣XetX

∣∣] is continuous on [t− ε, t+ ε]. For that, we use the
dominated convergence theorem. Without loss of generality, let us assume that t is strictly
positive. Let 0 < δ 6 ε′ 6 ε such that t− ε′ > 0. We have∣∣∣Xe(t+δ)X
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which is integrable with respect to P on Ω and does not depend on δ. Furthermore, it holds
that,

lim
δ→0

∣∣∣Xe(t+δ)X
∣∣∣ =

∣∣XetX
∣∣ , P-a.s.

The dominated convergence theorem then gives the continuity of the function t 7→ E
[∣∣XetX

∣∣].
This function is therefore integrable on [t− ε, t+ ε]. This gives that (t, ω) 7→ X(ω)etX(ω)

is integrable on [t− ε, t+ ε]× Ω.

We can now apply Fubini's theorem to the function s 7→
∫ s
t−ε E

[
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]
du. We get∫ s
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]
, P-a.s.



By a similar argument as the one above, one can easily prove that t 7→ E
[
XetX

]
is con-

tinuous on [t− ε, t+ ε]. Therefore, the derivative with respect to s of the left-hand side is
the term inside the integral. This yields the result: we have proved that f is di�erentiable
on I, with derivative f ′(t) = E

[
XetX

]
.

This argument can be reproduced to prove that f is n times di�erentiable for all integers
n, with n-th derivative f (n)(t) = E

[
XnetX

]
.

The derivative of F at 0 is then
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d
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= E [X] .

Di�erentiating a second time with respect to t yields
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= Var(X).

(b) For a Poisson random variable with parameter λ and t ∈ R, we have

E
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=
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and so F (t) = λ
(
et − 1

)
for t ∈ R. Di�erentiating once gives F ′(t) = λet for t ∈ R, and

then for all n > 2 we have F (n)(t) = λet. Therefore for all n ∈ N, cn = λ.

Solution 1.2

The density of the Gamma(k, λ) distribution is fΓ(k,λ)(t) = λk
tk−1

(k − 1)!
e−λt for t > 0. We

prove by induction that this is the density of Sk for all natural integers.

Basis: First, S1 = T1 is exponentially distributed with parameter λ with density g(t) = λe−λt,
so S1 has a Gamma(1, λ) distribution.



Induction step: Assume Sk is Gamma(k, λ)-distributed and calculate the density for Sk+1 (using
independence of Tk+1 and Sk, and convolution):

g∗(k+1)(t) = g ∗ g∗k(t) =

∫ t

0
λe−λ(t−s)λk

sk−1

(k − 1)!
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= λk+1e−λt
∫ t

0
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k

k!
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Hence Sk+1 is Gamma(k + 1, λ)-distributed and the induction is complete.

Remarks:

• Gamma(ν, λ) distribution is de�ned for general parameters ν, λ > 0 and has density

λν
tν−1

Γ(ν)
e−λt, t > 0,

where Γ(ν) =

∫ ∞
0

tν−1e−tdt is the gamma function.

• For ν = k ∈ N this is also called the Erlang-k distribution.

• We can calculate the characteristic function of the Gamma(k, λ) distribution via the char-
acteristic function of Exp(λ):
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]
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Solution 1.3

(a) For all r > 0 we have
{D > r} ⊂ {N(Br) = 0} ⊂ {D ≥ r} (1)

Thus, we have on the one hand

P[D > r] ≤ P[N(Br) = 0] = e−λπr
2

(2)

and on the other hand

P[D > r] = lim
n→∞

P[D ≥ r + 1/n] ≥ lim sup
n→∞

P[N(Br+1/n) = 0]

= lim sup
n→∞

e−λπ(r+1/n)2 = e−λπr
2
, (3)

yielding P[D > r] = e−λπr
2
. Hence, the distribution function F and density f of D are

given by

F (r) = 1− e−λπr
2

and f(r) = 2λπre−λπr
2
, r > 0. (4)



(b) Note that BR\Br and Br are disjoint sets, whence N(BR\Br) and N(Br) are independent.
Hence, we have

f(R, r) = P [N(BR \Br) = 0 |N(Br) = 1] = P [N(BR \Br) = 0] = e−λπ(R2−r2). (5)

This immediately implies that

lim
R↘0

lim
r↘0

f(R, r) = lim
r↘0

lim
R↘r

f(R, r) = e0 = 1. (6)

Intuitively, f(R, r) is the probability that no point lies in the annulus BR \Br given that 1
point lies in the small circle Br. As the number of points in disjoints sets are independent,
the conditioning doesn't matter. Moreover, the expected number of points in each set is
equal to λ times its area. Hence as the area shrinks to 0, the expected number of points in
the area goes to 0 and the probability that no point lies in the area goes to 1.


