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Solution 2.1

(a) Let A be a bounded Borel set. Notice that for some n0 ∈ N,

A ⊂ [0, an], ∀n > n0.

Let us compute the characteristic function of Nn(A) for n > n0 at t ∈ R:

φNn(A)(t) = E
[
eitNn(A)

]
=

n∏
i=1

E
[
eit1(Si∈A)

]
= E

[
eit1(S1∈A)

]n
=

((
1− |A|

an

)
+
|A|
an

eit
)n

=

(
1 +

λ|A|
n

(
eit − 1

))n
n→∞−−−→ exp

(
λ|A|

(
eit − 1

))
The function t 7→ exp

(
λ|A|

(
eit − 1

))
is continuous at 0, so the sequence (Nn(A))n∈N

converges in distribution towards a Poisson distributed random variable with parameter
λ|A|.

(b) Let (t1, . . . , tk) ∈ Rk, and A1, A2, . . . , Ak be Borel sets such that for n > n0, we have
A1, A2, . . . , Ak ⊂ [0, an]. We compute the characteristic function of the random vector
(Nn(A1), N

n(A2), . . . , N
n(Ak)) at point (t1, . . . , tk) ∈ Rk:



φ(Nn(A1),Nn(A2),...,Nn(Ak)) (t1, . . . , tk) = E
[
ei

∑k
j=1 tjNn(Aj)

]
= E

exp
i

k∑
j=1

tj

n∑
l=1

1 (Sl ∈ Aj)


= E

exp
i

n∑
l=1

k∑
j=1

tj1 (Sl ∈ Aj)


=

n∏
l=1

E

exp
i

k∑
j=1

tj1 (Sl ∈ Aj)


= E

exp
i

k∑
j=1

tj1 (X1 ∈ Aj)

n

=

1− λ

n

k∑
j=1

|Aj |

+

k∑
j=1

eitj
λ|Aj |
n

n

n→∞−−−→ exp

λ
 k∑
j=1

|Aj |
(
eitj − 1

)
=

k∏
i=1

exp
(
λ
(
|Aj |

(
eitj − 1

)))
,

where we used for the fourth equality that the Xi's are independent, for the �fth equality,
that the Xi's are identically distributed, and for the sixth equality, that the Xi's are
uniformly distributed in [0, nλ ]. The sequence of characteristic functions of the vectors
(Nn(A1), N

n(A2), . . . , N
n(Ak)) converges pointwise towards the product of characteristic

functions of Poisson random variables with parameter λ|A1|, λ|A2|, . . . , λ|Ak|. The limit
function is continuous at 0, so the sequence of random vectors converges to a vector of
independent Poisson-distributed random variables with parameters λ|A1|, λ|A2|, . . . , λ|Ak|.

(c) By the previous question, for 0 6 t1 < t2 < · · · < tk < ∞, the sequence of vec-

tors
((
Nn
t1 , N

n
t2 −N

n
t1 , N

n
t3 −N

n
t2 , . . . , N

n
tk
−Nn

tk−1

))
n∈N

converges in distribution towards((
Nt1 , Nt2 −Nt1 , Nt3 −Nt2 , . . . , Ntk −Ntk−1

))
where N is a Poisson process with rate λ.

The map that transforms (x1, x2, . . . , xk) into
(
x1, x2 + x1, x3 + x2 + x1, . . . ,

∑k
j=1 xj

)
is

a continuous bijection, therefore the sequence of vectors
((
Nn
t1 , N

n
t2 , N

n
t3 , . . . , N

n
tk

))
n∈N con-

verges in distribution to (Nt1 , Nt2 , Nt3 , . . . , Ntk). The processes N
n converge to a Poisson

process with rate λ in the sense of �nite-dimentional distributions.

Solution 2.2

For n ∈ N set T̃n := − log(Un)/λ. Clearly, the T̃n are i.i.d. as the Un and we have for t ≥ 0

Mt = sup
{
n ∈ N0 :

n∑
k=1

T̃k ≤ t
}
. (1)



Moreover, the T̃n are exponentially distributed. Indeed, let x ∈ R. Then we have

P[T̃1 ≤ x] = P[logU1 ≥ −λx] = P[U1 ≥ e−λx] =

{
0 if x ≤ 0,

1− e−λx if x > 0.
(2)

a) First, note that for 0 ≤ s < t we have {Ms = +∞} ⊂ {Mt = +∞}. Hence, we have⋃
t≥0{Mt = +∞} =

⋃
j∈N{Mj = +∞}. To establish the �rst claim, it therefore su�ces to

show that for all j ∈ N we have P[Mj = +∞] = 0. Fix j ∈ N. Using the independence of

the T̃n we have

P[Mj = +∞] ≤ P[
⋂
k∈N
{T̃k ≤ j}] =

∞∏
k=1

P[T̃k ≤ j]

=
∞∏
k=1

(1− e−λj) = 0. (3)

Next, it follows immediately from the de�nition that (Nt) starts at 0 and has nondecreas-
ing trajectories with values in N0. It remains to show that the sample paths are right-
continuous. Clearly we have to check this property only outside the set

⋃
t≥0{Mt = +∞}.

Fix t ≥ 0 and let ω ∈
⋂
t≥0{Mt < ∞} and n := Nt(ω) = Mt(ω) ∈ N0. Then we have by

de�nition of Mt
n∑
k=1

T̃k(ω) ≤ t and

n+1∑
k=1

T̃k(ω) > t. (4)

Hence, for all ε > 0 su�ciently small we also have

n∑
k=1

T̃k(ω) ≤ t+ ε and

n+1∑
k=1

T̃k(ω) > t+ ε. (5)

Therefore, for all ε > 0 su�ciently small we have Nt+ε(ω) = n = Nt(ω) implying that the
function s 7→ Ns(ω) is right-continuous at s = t.

b) Denote by (Sn)n∈N the sequence of jump times of N . For ω ∈
⋂
t≥0{Mt < +∞}, it follows

immediately from the de�nition of M and N that N·(ω) increase by jumps of size 1 and

that Sn(ω) =
∑n

k=1 T̃k(ω) < ∞, n ∈ N. (Note that T̃n(ω) ∈ (0,∞) for all n ∈ N). For
ω ∈

⋃
t≥0{Mt = +∞}, we have N·(ω) ≡ 0 and Sn(ω) = +∞ for all n ∈ N. In conclusion, N

increases by jumps of size 1, and we have Sn <∞ P-a.s. for all n ∈ N. Denote by (Tn)n∈N
the sequence of interarrival times of N . This is well de�ned on

⋂
t≥0{Mt < +∞}, where we

have Tn = T̃n. In particular, the Tn are i.i.d. and distributed as the T̃n, i.e. Tn ∼ Exp(λ).
This establishes the claim as we know from the lecture that a counting process with jumps
of size 1 starting at 0 and having i.i.d. interarrival times that are exponentially distributed
with parameter λ > 0, is a Poisson process with rate λ.

Solution 2.3

Denote by Sym(n) the symmetric group of degree n. Since the Xi have a density, we have
X(1) < X(2) < . . . < X(n) P-a.s. Using that the Xi are i.i.d. and that the order of Sym(n) is n!,



we get for all B ∈ B(Rn)

P[(X(1), . . . , X(n)) ∈ B] = P[(X(1), . . . , X(n)) ∈ B,X(1) < X(2) < · · · < X(n)]

=
∑

π∈Sym(n)

P[(X(1), . . . , X(n)) ∈ B,X(1) < · · · < X(n), X(1) = Xπ(1), . . . , X(n) = Xπ(n)]

=
∑

π∈Sym(n)

P[(Xπ(1), . . . , Xπ(n)) ∈ B,Xπ(1) < Xπ(2) < · · · < Xπ(n)]

= n!P[(X1, . . . , Xn) ∈ B,X1 < X2 < · · · < Xn]

=

∫
Rn

1{(x1,...,xn)∈B}n!1{x1<x2<···<xn}

n∏
i=1

f(xi) dx1 · · · dxn. (6)

This establishes the claim.


