Applied Stochastic Processes

Solution Sheet 2

Solution 2.1

(a) Let A be a bounded Borel set. Notice that for some $n_{0} \in \mathbb{N}$,

$$
A \subset\left[0, a_{n}\right], \forall n \geqslant n_{0}
$$

Let us compute the characteristic function of $N_{n}(A)$ for $n \geqslant n_{0}$ at $t \in \mathbb{R}$:

$$
\begin{aligned}
\phi_{N_{n}(A)}(t) & =\mathbb{E}\left[\mathrm{e}^{\mathrm{i} t N_{n}(A)}\right] \\
& =\prod_{i=1}^{n} \mathbb{E}\left[\mathrm{e}^{\mathrm{i} t 1\left(S_{i} \in A\right)}\right] \\
& =\mathbb{E}\left[\mathrm{e}^{\mathrm{i} t 1\left(S_{1} \in A\right)}\right]^{n} \\
& =\left(\left(1-\frac{|A|}{a_{n}}\right)+\frac{|A|}{a_{n}} \mathrm{e}^{\mathrm{i} t}\right)^{n} \\
& =\left(1+\frac{\lambda|A|}{n}\left(\mathrm{e}^{\mathrm{i} t}-1\right)\right)^{n} \\
& \xrightarrow{n \rightarrow \infty} \exp \left(\lambda|A|\left(\mathrm{e}^{\mathrm{i} t}-1\right)\right)
\end{aligned}
$$

The function $t \mapsto \exp \left(\lambda|A|\left(\mathrm{e}^{\mathrm{i} t}-1\right)\right)$ is continuous at 0 , so the sequence $\left(N_{n}(A)\right)_{n \in \mathbb{N}}$ converges in distribution towards a Poisson distributed random variable with parameter $\lambda|A|$.
(b) Let $\left(t_{1}, \ldots, t_{k}\right) \in \mathbb{R}^{k}$, and $A_{1}, A_{2}, \ldots, A_{k}$ be Borel sets such that for $n \geqslant n_{0}$, we have $A_{1}, A_{2}, \ldots, A_{k} \subset\left[0, a_{n}\right]$. We compute the characteristic function of the random vector $\left(N^{n}\left(A_{1}\right), N^{n}\left(A_{2}\right), \ldots, N^{n}\left(A_{k}\right)\right)$ at point $\left(t_{1}, \ldots, t_{k}\right) \in \mathbb{R}^{k}$:

$$
\begin{aligned}
& \phi_{\left(N^{n}\left(A_{1}\right), N^{n}\left(A_{2}\right), \ldots, N^{n}\left(A_{k}\right)\right)\left(t_{1}, \ldots, t_{k}\right)}=\mathbb{E}\left[\mathrm{e}^{\left.\mathrm{i} \sum_{j=1}^{k} t_{j} N_{n}\left(A_{j}\right)\right]}\right. \\
&=\mathbb{E}\left[\exp \left(\mathrm{i} \sum_{j=1}^{k} t_{j} \sum_{l=1}^{n} 1\left(S_{l} \in A_{j}\right)\right]\right] \\
&=\mathbb{E}\left[\exp \left(\mathrm{i} \sum_{l=1}^{n} \sum_{j=1}^{k} t_{j} 1\left(S_{l} \in A_{j}\right)\right)\right] \\
&=\prod_{l=1}^{n} \mathbb{E}\left[\exp \left(\mathrm{i} \sum_{j=1}^{k} t_{j} 1\left(S_{l} \in A_{j}\right)\right)\right] \\
&\left.=\mathbb{E}\left[\exp \left(\mathrm{i} \sum_{j=1}^{k} t_{j} 1\left(X_{1} \in A_{j}\right)\right)\right]^{n}\right] \\
&=\left(\left(1-\frac{\lambda}{n} \sum_{j=1}^{k}\left|A_{j}\right|\right)+\sum_{j=1}^{k} \mathrm{e}^{\mathrm{i} t_{j}} \frac{\lambda\left|A_{j}\right|}{n}\right)^{n} \\
& \\
& \xrightarrow{n \rightarrow \infty} \exp \left(\lambda\left(\sum_{j=1}^{k}\left|A_{j}\right|\left(\mathrm{e}^{\mathrm{i} t_{j}}-1\right)\right)\right) \\
&=\prod_{i=1}^{k} \exp \left(\lambda\left(\left|A_{j}\right|\left(\mathrm{e}^{\mathrm{i} t_{j}}-1\right)\right)\right),
\end{aligned}
$$

where we used for the fourth equality that the X_{i} 's are independent, for the fifth equality, that the X_{i} 's are identically distributed, and for the sixth equality, that the X_{i} 's are uniformly distributed in $\left[0, \frac{n}{\lambda}\right]$. The sequence of characteristic functions of the vectors $\left(N^{n}\left(A_{1}\right), N^{n}\left(A_{2}\right), \ldots, N^{n}\left(A_{k}\right)\right)$ converges pointwise towards the product of characteristic functions of Poisson random variables with parameter $\lambda\left|A_{1}\right|, \lambda\left|A_{2}\right|, \ldots, \lambda\left|A_{k}\right|$. The limit function is continuous at 0 , so the sequence of random vectors converges to a vector of independent Poisson-distributed random variables with parameters $\lambda\left|A_{1}\right|, \lambda\left|A_{2}\right|, \ldots, \lambda\left|A_{k}\right|$.
(c) By the previous question, for $0 \leqslant t_{1}<t_{2}<\cdots<t_{k}<\infty$, the sequence of vectors $\left(\left(N_{t_{1}}^{n}, N_{t_{2}}^{n}-N_{t_{1}}^{n}, N_{t_{3}}^{n}-N_{t_{2}}^{n}, \ldots, N_{t_{k}}^{n}-N_{t_{k-1}}^{n}\right)\right)_{n \in \mathbb{N}}$ converges in distribution towards $\left(\left(N_{t_{1}}, N_{t_{2}}-N_{t_{1}}, N_{t_{3}}-N_{t_{2}}, \ldots, N_{t_{k}}-N_{t_{k-1}}\right)\right)$ where N is a Poisson process with rate λ. The map that transforms $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ into $\left(x_{1}, x_{2}+x_{1}, x_{3}+x_{2}+x_{1}, \ldots, \sum_{j=1}^{k} x_{j}\right)$ is a continuous bijection, therefore the sequence of vectors $\left(\left(N_{t_{1}}^{n}, N_{t_{2}}^{n}, N_{t_{3}}^{n}, \ldots, N_{t_{k}}^{n}\right)\right)_{n \in \mathbb{N}}$ converges in distribution to $\left(N_{t_{1}}, N_{t_{2}}, N_{t_{3}}, \ldots, N_{t_{k}}\right)$. The processes N^{n} converge to a Poisson process with rate λ in the sense of finite-dimentional distributions.

Solution 2.2

For $n \in \mathbb{N}$ set $\widetilde{T}_{n}:=-\log \left(U_{n}\right) / \lambda$. Clearly, the \widetilde{T}_{n} are i.i.d. as the U_{n} and we have for $t \geq 0$

$$
\begin{equation*}
M_{t}=\sup \left\{n \in \mathbb{N}_{0}: \sum_{k=1}^{n} \widetilde{T}_{k} \leq t\right\} \tag{1}
\end{equation*}
$$

Moreover, the \widetilde{T}_{n} are exponentially distributed. Indeed, let $x \in \mathbb{R}$. Then we have

$$
\mathbb{P}\left[\widetilde{T}_{1} \leq x\right]=\mathbb{P}\left[\log U_{1} \geq-\lambda x\right]=\mathbb{P}\left[U_{1} \geq \mathrm{e}^{-\lambda x}\right]= \begin{cases}0 & \text { if } x \leq 0 \tag{2}\\ 1-\mathrm{e}^{-\lambda x} & \text { if } x>0\end{cases}
$$

a) First, note that for $0 \leq s<t$ we have $\left\{M_{s}=+\infty\right\} \subset\left\{M_{t}=+\infty\right\}$. Hence, we have $\bigcup_{t \geq 0}\left\{M_{t}=+\infty\right\}=\bigcup_{j \in \mathbb{N}}\left\{M_{j}=+\infty\right\}$. To establish the first claim, it therefore suffices to show that for all $j \in \mathbb{N}$ we have $\mathbb{P}\left[M_{j}=+\infty\right]=0$. Fix $j \in \mathbb{N}$. Using the independence of the \widetilde{T}_{n} we have

$$
\begin{align*}
\mathbb{P}\left[M_{j}=+\infty\right] & \leq \mathbb{P}\left[\bigcap_{k \in \mathbb{N}}\left\{\widetilde{T}_{k} \leq j\right\}\right]=\prod_{k=1}^{\infty} \mathbb{P}\left[\widetilde{T}_{k} \leq j\right] \\
& =\prod_{k=1}^{\infty}\left(1-\mathrm{e}^{-\lambda j}\right)=0 \tag{3}
\end{align*}
$$

Next, it follows immediately from the definition that $\left(N_{t}\right)$ starts at 0 and has nondecreasing trajectories with values in \mathbb{N}_{0}. It remains to show that the sample paths are rightcontinuous. Clearly we have to check this property only outside the set $\bigcup_{t \geq 0}\left\{M_{t}=+\infty\right\}$. Fix $t \geq 0$ and let $\omega \in \bigcap_{t \geq 0}\left\{M_{t}<\infty\right\}$ and $n:=N_{t}(\omega)=M_{t}(\omega) \in \mathbb{N}_{0}$. Then we have by definition of M_{t}

$$
\begin{equation*}
\sum_{k=1}^{n} \widetilde{T}_{k}(\omega) \leq t \quad \text { and } \quad \sum_{k=1}^{n+1} \widetilde{T}_{k}(\omega)>t \tag{4}
\end{equation*}
$$

Hence, for all $\epsilon>0$ sufficiently small we also have

$$
\begin{equation*}
\sum_{k=1}^{n} \widetilde{T}_{k}(\omega) \leq t+\epsilon \quad \text { and } \quad \sum_{k=1}^{n+1} \widetilde{T}_{k}(\omega)>t+\epsilon \tag{5}
\end{equation*}
$$

Therefore, for all $\epsilon>0$ sufficiently small we have $N_{t+\epsilon}(\omega)=n=N_{t}(\omega)$ implying that the function $s \mapsto N_{s}(\omega)$ is right-continuous at $s=t$.
b) Denote by $\left(S_{n}\right)_{n \in \mathbb{N}}$ the sequence of jump times of N. For $\omega \in \bigcap_{t \geq 0}\left\{M_{t}<+\infty\right\}$, it follows immediately from the definition of M and N that N. ω) increase by jumps of size 1 and that $S_{n}(\omega)=\sum_{k=1}^{n} \widetilde{T}_{k}(\omega)<\infty, n \in \mathbb{N}$. (Note that $\widetilde{T}_{n}(\omega) \in(0, \infty)$ for all $n \in \mathbb{N}$). For $\omega \in \bigcup_{t \geq 0}\left\{M_{t}=+\infty\right\}$, we have $N .(\omega) \equiv 0$ and $S_{n}(\omega)=+\infty$ for all $n \in \mathbb{N}$. In conclusion, N increases by jumps of size 1 , and we have $S_{n}<\infty \mathbb{P}$-a.s. for all $n \in \mathbb{N}$. Denote by $\left(T_{n}\right)_{n \in \mathbb{N}}$ the sequence of interarrival times of N. This is well defined on $\bigcap_{t \geq 0}\left\{M_{t}<+\infty\right\}$, where we have $T_{n}=\widetilde{T}_{n}$. In particular, the T_{n} are i.i.d. and distributed as the \widetilde{T}_{n}, i.e. $T_{n} \sim \operatorname{Exp}(\lambda)$. This establishes the claim as we know from the lecture that a counting process with jumps of size 1 starting at 0 and having i.i.d. interarrival times that are exponentially distributed with parameter $\lambda>0$, is a Poisson process with rate λ.

Solution 2.3

Denote by $\operatorname{Sym}(n)$ the symmetric group of degree n. Since the X_{i} have a density, we have $X_{(1)}<X_{(2)}<\ldots<X_{(n)} \mathbb{P}$-a.s. Using that the X_{i} are i.i.d. and that the order of $\operatorname{Sym}(n)$ is $n!$,
we get for all $B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$

$$
\begin{align*}
\mathbb{P}\left[\left(X_{(1)},\right.\right. & \left.\left.\ldots, X_{(n)}\right) \in B\right]=\mathbb{P}\left[\left(X_{(1)}, \ldots, X_{(n)}\right) \in B, X_{(1)}<X_{(2)}<\cdots<X_{(n)}\right] \\
& =\sum_{\pi \in \operatorname{Sym}(n)} \mathbb{P}\left[\left(X_{(1)}, \ldots, X_{(n)}\right) \in B, X_{(1)}<\cdots<X_{(n)}, X_{(1)}=X_{\pi(1)}, \ldots, X_{(n)}=X_{\pi(n)}\right] \\
& =\sum_{\pi \in \operatorname{Sym}(n)} \mathbb{P}\left[\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right) \in B, X_{\pi(1)}<X_{\pi(2)}<\cdots<X_{\pi(n)}\right] \\
& =n!\mathbb{P}\left[\left(X_{1}, \ldots, X_{n}\right) \in B, X_{1}<X_{2}<\cdots<X_{n}\right] \\
& =\int_{\mathbb{R}^{n}} \mathbb{1}_{\left\{\left(x_{1}, \ldots, x_{n}\right) \in B\right\}} n!\mathbb{1}_{\left\{x_{1}<x_{2}<\cdots<x_{n}\right\}} \prod_{i=1}^{n} f\left(x_{i}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n} . \tag{6}
\end{align*}
$$

This establishes the claim.

