Applied Stochastic Processes

Exercise Sheet 2

Please hand in by 12:00 on Tuesday 10.03.2015 in the assistant's box in front of HG E 65.1

Exercise 2.1

Let $n \in \mathbb{N}$. We consider here a queuing model, where n clients are arriving at random (uniformly) during opening hours. The shop is open from time $t=0$ to time $t=a_{n}>0$. Let $S_{1}, S_{2}, \ldots, S_{n}$ be i.i.d. random variables that are uniformly distributed on $\left[0, a_{n}\right]$. Let A be a bounded Borel set, we define

$$
N^{n}(A)=\sum_{i=1}^{n} 1\left(S_{i} \in A\right) .
$$

We choose $a_{n}=\frac{n}{\lambda}$, for some constant $\lambda>0$.
(a) Prove that $\left(N^{n}(A)\right)_{n \in \mathbb{N}}$ converges to a $\operatorname{Poi}(\lambda|A|)$ random variable.
(b) Let $k \in \mathbb{N}$ and $A_{1}, A_{2}, \ldots, A_{k}$ be disjoint and bounded Borel sets. Show that the sequence $\left(N^{n}\left(A_{1}\right), N^{n}\left(A_{2}\right), \ldots, N^{n}\left(A_{k}\right)\right)_{n \in \mathbb{N}}$ converges in distribution towards a vector of independent Poisson random variables with parameters $\lambda\left|A_{1}\right|, \lambda\left|A_{2}\right|, \ldots, \lambda\left|A_{k}\right|$.
(c) Conclude that the sequence of processes defined as $N_{t}^{n}:=N^{n}([0, t])$ for $t \geqslant 0$ and $n \in \mathbb{N}$ converges to a Poisson process in the sense of finite-dimensional distributions, i.e.

$$
\left(N_{t_{1}}^{n}, N_{t_{2}}^{n}, \ldots, N_{t_{k}}^{n}\right) \xrightarrow[n \rightarrow \infty]{d}\left(N_{t_{1}}, N_{t_{2}}, \ldots, N_{t_{k}}\right), \forall 0 \leqslant t_{1}<t_{2}<\cdots<t_{k}<\infty
$$

where N is a Poisson process with rate λ.
This means that in the limit, if the ratio $\frac{\text { length of the opening time }}{\text { number of clients }}$ tends to a constant
when both quantities become large, then the number of clients in a given time interval converges to a Poisson random variable with parameter: limit of the ratio \times length of the time interval.

Exercise 2.2

Let $\left(U_{k}\right)_{k \in \mathbb{N}}$ be a sequence of i.i.d. random variables which are uniformly distributed on $(0,1)$ and $\lambda>0$. For each $t \geq 0$ define a random variable M_{t} valued in $\mathbb{N}_{0} \cup\{+\infty\}$ by

$$
M_{t}:=\sup \left\{n \in \mathbb{N}_{0}:-\sum_{k=1}^{n} \log U_{k} \leq \lambda t\right\} .
$$

a) Show that $\mathbb{P}\left[\bigcup_{t \geq 0}\left\{M_{t}=+\infty\right\}\right]=0$ and that the stochastic process $\left(N_{t}\right)_{t \geq 0}$ defined by $N_{t}:=M_{t} \mathbb{1}_{\cap_{t \geq 0}\left\{M_{t}<+\infty\right\}}$ is a counting process starting at 0 .
b) Show that N is a standard Poisson process with rate λ.

The above result can be used to simulate a standard Poisson processes on a computer.

Exercise 2.3

Let X_{1}, \ldots, X_{n} be real-valued i.i.d. random variables with a density f. Denote by $X_{(1)}, \ldots, X_{(n)}$ the order statistics of X_{1}, \ldots, X_{n}, that we define recursively as

$$
X_{(1)}:=\min \left\{X_{1}, \ldots, X_{n}\right\}
$$

and for $k \in\{2, \ldots, n\}, X_{(k)}:=\min \left\{\left\{X_{1}, \ldots, X_{n}\right\} \backslash\left\{X_{(1)}, \ldots, X_{(k-1)}\right\}\right\}$.
Equivalently, $X_{(1)}, \ldots, X_{(n)}$ is defined as $X_{\pi(1)}, \ldots, X_{\pi(n)}$, where π is a permutation (depending on the X_{i} 's) such that $X_{\pi(1)}<X_{\pi(2)}<\ldots<X_{\pi(n)}$.

Show that the joint density g of $X_{(1)}, \ldots, X_{(n)}$ is given by

$$
g\left(x_{1}, \ldots, x_{n}\right)=n!\prod_{i=1}^{n} f\left(x_{i}\right) \mathbb{1}_{\left\{x_{1}<x_{2}<\cdots<x_{n}\right\}}
$$

