Applied Stochastic Processes

Exercise Sheet 6

Please hand in by 12:00 on Tuesday 14.04.2015 in the assistant's box in front of HG E 65.1

Exercise 6.1

Vehicles of random lengths arrive at a gate. Let L_{k} denote the length of the k th vehicle. We assume that the random variables L_{k} are i.i.d. with $E\left[L_{k}\right]<\infty$. The first vehicle that arrives parks directly at the gate. The vehicles arriving afterwards queue behind, leaving a random distance to the vehicle parked in front of their own. We assume that these distances are independent and uniformly distributed on $[0,1]$. For $x \geq 0$, let N_{x} denote the number of vehicles parked in distance at most x from the gate. Compute $\lim _{x \rightarrow \infty} N_{x} / x$.

Exercise 6.2

Show that a renewal process with renewal function $M(t)=c t, t \geq 0$ for some constant $c>0$ is a Poisson process.

Hint: The Laplace transform determines the distribution.

Exercise 6.3

Let N be a renewal process with interarrival times $\left(T_{k}\right)_{k \in \mathbb{N}}$ and renewal times $\left(S_{k}\right)_{k \in \mathbb{N}}$, i.e. $S_{k}:=\sum_{j=1}^{k} T_{j}$. Denote by \mathbb{F} the filtration generated by $\left(T_{k}\right)_{k \in \mathbb{N}}$, i.e. $\mathcal{F}_{k}:=\sigma\left(T_{1}, \ldots, T_{k}\right)$ for all k, and let τ be an \mathbb{F}-stopping time with $\tau<\infty \mathbb{P}$-a.s. Define the σ-field \mathcal{F}_{τ} by

$$
\mathcal{F}_{\tau}:=\left\{A \in \mathcal{F} \mid A \cap\{\tau=k\} \in \mathcal{F}_{k} \forall k \in \mathbb{N}_{0}\right\}
$$

a) Show that the process $\left(\widetilde{S}_{k}\right)_{k \geq 0}$ defined by

$$
\widetilde{S}_{k}=S_{\tau+k}-S_{\tau}, \quad k \geq 0
$$

is equal in distribution to $\left(S_{k}\right)_{k \in \mathbb{N}}$ and independent from \mathcal{F}_{τ}.
b) Suppose that $T_{1}>0 \mathbb{P}$-a.s. Show that the process $N^{(\tau)}$ define by

$$
N_{t}^{(\tau)}=N_{S_{\tau}+t}-N_{S_{\tau}}, \quad t \geq 0
$$

is again a renewal process, which is equal in distribution to N and independent of \mathcal{F}_{τ}.
Hint: Use part a).

Exercise 6.4

Let N be a renewal process with renewal times $\left(S_{k}\right)_{k \in \mathbb{N}_{0}}$, where $S_{0}:=0$, and interarrival distribution F having finite mean $\mu>0$. Denote by A and E the age and the excess process of N, respectively, i.e. $A_{t}:=t-S_{N_{t}}$ and $E_{t}:=S_{N_{t}+1}-t, t \geq 0$. For $x, y \geq 0$ set $Z_{(x, y)}(t):=\mathbb{P}\left[A_{t} \geq x, E_{t}>y\right]$.
a) Show that $Z_{(0, y)}$ satisfies the renewal equation

$$
Z_{(0, y)}(t)=1-F(t+y)+\int_{0}^{\infty} Z_{(0, y)}(t-s) \mathrm{d} F(s), \quad t \geq 0
$$

b) Show that for $t \geq x$ we have $Z_{(x, y)}(t)=Z_{(0, x+y)}(t-x)$.
c) Assume that F is non-arithmetic. Compute $G_{\infty}(x, y):=\lim _{t \rightarrow \infty} Z_{(x, y)}(t)$. Deduce that the random vector $\left(A_{t}, E_{t}\right)$ converges in distribution to some random vector $\left(A_{\infty}, E_{\infty}\right)$ as $t \rightarrow \infty$.
d) Determine all distributions F for which A_{∞} and E_{∞} are independent.

