Applied Stochastic Processes

Exercise Sheet 7

Please hand in by 12:00 on Tuesday 21.04.2015 in the assistant's box in front of HG E 65.1

Exercise 7.1

A die is rolled repeatedly. Which of the following stochastic processes $\left(X_{n}\right)_{n \in \mathbb{N}}$ are Markov chains? For those that are, determine the transition matrix and in b), additionally, the n-step transition matrix.
(a) Let X_{n} denote the number of rolls at time n since the most recent six.
(b) Let X_{n} denote the largest number that has come up in the first n rolls.
(c) Let X_{n} denote the larger number of those that came up in the rolls number $n-1$ and n (the last two rolls), and we consider $\left(X_{n}\right)_{n \geq 2}$.

Exercise 7.2

Determine the transition matrices for the following homogeneous Markov chains $\left(X_{n}\right)_{n \in \mathbb{N}}$:
(a) A rat moves randomly in the maze shown by the figure below.

When it leaves a room, it visits one of the neighbouring rooms with equal probabilities. Denote by $\left(X_{n}\right)_{n \in \mathbb{N}}$ the sequence of rooms that the rat visits.
(b) N black and N red balls are placed in two urns so that each urn contains N balls. In each step a ball is drawn at random from each urn, and each of the two balls is put into the other urn so that each urn always contains N balls. Denote by $X_{n}, n \in \mathbb{N}$, the number of red balls in the first urn after n steps.
(c) A coin is tossed repeatedly with $\mathbb{P}[$ "head" $]=p \in(0,1)$. Denote by $Y_{n}, n \in \mathbb{N}$, the outcome of the n-th coin toss, where we interpret 1 as "head" and 0 as "tails". Fix $k \in \mathbb{N}$ and define $X_{n}:=\left(Y_{n+1}, Y_{n+2}, \ldots, Y_{n+k}\right)$.
Hint: You can identify X_{n} with the corresponding binary number $\sum_{i=1}^{k} Y_{n+i} 2^{k-i}$.

Exercise 7.3

Inhomogeneous Markov chains

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\left(X_{n}\right)_{n \in \mathbb{N}}$ a sequence of random variables valued in some nonempty, at most countable set E endowed with the σ-algebra $\mathcal{E}:=2^{E}$.

For $n \in \mathbb{N}$ define the linear operator $R(n)$ from the set of bounded functions on E in itself by

$$
(R(n) f)(x):= \begin{cases}\mathbb{E}\left[f\left(X_{n}\right) \mid X_{n-1}=x\right], & \text { for } x \in E \text { if } \mathbb{P}\left[X_{n-1}=x\right]>0 \\ f(x) & \text { for } x \in E \text { if } \mathbb{P}\left[X_{n-1}=x\right]=0\end{cases}
$$

for $f \in L^{\infty}(E)$.
(a) Show that this linear operator is bounded, with $\|R(n)\| \leqslant 1$ for all integer n.

One can identify this bounded linear operator with the (possibly infinite) matrix $R(n) \in[0,1]^{E \times E}$ defined as

$$
R_{x, y}(n):= \begin{cases}\left(R(n) \delta_{y}\right)(x)=\mathbb{P}\left[X_{n}=y \mid X_{n-1}=x\right] & \text { if } \mathbb{P}\left[X_{n-1}=x\right]>0 \\ \delta_{x, y} & \text { if } \mathbb{P}\left[X_{n-1}=x\right]=0\end{cases}
$$

where δ denotes Kronecker's delta. We identify any function $f: E \rightarrow \mathbb{R}$ with the (possibly infinite) column vector $f \in \mathbb{R}^{E}$ defined by $f_{x}:=f(x)$. Likewise, we identify any probability measure μ on E with the (possibly infinite) row vector $\mu \in[0,1]^{E}$ defined by $\mu_{x}=\mu(\{x\})$.
(b) Show that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a discrete-time Markov chain if and only if for all $n \in \mathbb{N}$ and all bounded functions $f: E \rightarrow \mathbb{R}$ we have

$$
\mathbb{E}\left[f\left(X_{n+1}\right) \mid X_{0}, \ldots, X_{n}\right]=(R(n+1) f)_{X_{n}} \mathbb{P} \text {-a.s. }
$$

(c) Let μ be any distribution on E. Show that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a discrete-time Markov chain with $X_{0} \sim \mu$ under \mathbb{P} if and only if for all $n \in \mathbb{N}$ and all $x_{0}, \ldots, x_{n} \in E$ we have

$$
\mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right]=\mu_{x_{0}} R_{x_{0}, x_{1}}(1) R_{x_{1}, x_{2}}(2) \times \cdots \times R_{x_{n-1}, x_{n}}(n)
$$

(d) Suppose that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a discrete-time Markov chain such that $X_{0} \sim \mu$ under \mathbb{P}. Let $f: E \rightarrow \mathbb{R}$ be a bounded function. Show that

$$
\mathbb{E}\left[f\left(X_{n}\right)\right]=\mu R(1) R(2) \cdots R(n) f, \quad n \geq 0
$$

(e) Suppose that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a discrete-time Markov chain. Show that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a homogeneous Markov chain if and only if there exists a transition matrix $R \in[0,1]^{E \times E}$ such that for all $n \in \mathbb{N}$ and all $y \in E$ we have

$$
R_{x, y}=R_{x, y}(n+1) \quad \text { if } \quad \mathbb{P}\left[X_{n}=x\right]>0
$$

Exercise 7.4

Let $\left(N_{t}\right)_{t \geqslant 0}$ be a Poisson process with rate $\lambda>0$. Denotes its arrival times by S_{1}, S_{2}, \ldots and the interarrival times by T_{1}, T_{2}, \ldots

Consider claims arriving at an insurance company according to N. The non-negative claim sizes $X_{i}, i \in\{1,2, \ldots$,$\} are i.i.d. with common distribution function G$. For $x \geqslant 0$, define the risk process $f_{x}(t)$, which corresponds to the capital reserves of the firm at time t, by

$$
f_{x}(t)=x+c t-\sum_{k=1}^{N_{t}} X_{k} .
$$

The constant $c>0$ is the rate at which the firm receives the premium.
Define the no-ruin probability starting with capital x as

$$
R(x)=\mathbb{P}\left[f_{x}(t) \geq 0 \text { for all } t>0\right]
$$

(a) Show that if $\lambda \mathbb{E}\left[X_{1}\right]<c$, then R^{\prime} satisfies the renewal equation with defect

$$
\begin{equation*}
R^{\prime}(t)=F^{\prime}(t) R(0)+\int_{0}^{t} R^{\prime}(t-s) \mathrm{d} F(s) \tag{*}
\end{equation*}
$$

where $F(t)=\int_{0}^{t} \frac{\lambda}{c} \mathbb{P}\left[X_{1}>u\right] \mathrm{d} u$ for $t \geq 0$.
(b) We keep the following assumption: $\lambda \mathbb{E}\left[X_{1}\right]<c$. Use the renewal equation (*) to show
(i) $R(\infty)=1$,
(ii) $R(0)=1-\frac{\lambda}{c} \mathbb{E}\left[X_{1}\right]$,
(iii) $R(t)=R(0)(1+M(t))$,
where $M(t)$ is the defective renewal function corresponding to F.
Hint: To show (ii) and (iii), solve the Laplace transform version of the renewal equation (*).
(c) Assume that the claim size has a second moment. The function R satisfies the renewal equation with defect $R=h+R * F$ for all $t \geqslant 0$, with $h=R(0)$. Assume that there exist an $\alpha>0$ such that

$$
\frac{\lambda}{c} \int_{0}^{\infty} \mathrm{e}^{\alpha t} \mathbb{P}\left[X_{1}>t\right] d t=1
$$

Use Smith's theorem in the case of a renewal process with defect to prove

$$
1-R(t) \sim_{t \rightarrow \infty} \frac{\mathrm{e}^{-\alpha t}\left(c-\lambda \mathbb{E}\left[X_{1}\right]\right)}{\alpha \lambda \int_{0}^{\infty} x \mathrm{e}^{\alpha x} \mathbb{P}\left[X_{1}>x\right] d x}
$$

In other words the no-ruin probability converges exponentially to 1 , as the initial capital goes to infinity.

