Applied Stochastic Processes

Exercise Sheet 8

Please hand in by 12:00 on Tuesday 28.04.2015 in the assistant's box in front of HGE 65.1

Exercise 8.1

Consider a homogeneous Markov chain $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ with state space $\{A, B, C, D, E, F\}$, where the transition probabilities are illustrated by the following graph:

Here we assume that $0<p, q, r<1$ and $p+q+r=1$. Suppose that the chain starts in state A. For $k \in\{D, E, F\}$ compute the probability that the chain ends up in state k.
Hint: Use the Markov property and the symmetry of the graph.

Exercise 8.2

Let $\left(X_{n}\right)_{n \geq 0}$ be a homogeneous Markov chain with countable state space E and transition probabilities $\left(r_{x, y}\right)_{x, y \in E}$. Let $C \subseteq E$ such that $E \backslash C$ is finite. Define $r_{x, C}=\sum_{y \in C} r_{x, y}$. Suppose that for each $x \in E \backslash C$ there exists an $n(x)$ such that $r_{x, C}(n(x))>0$. Let $\tau_{C}=\inf \left\{n \geq 0: X_{n} \in C\right\}$,

$$
\begin{gathered}
\varepsilon=\min \left\{r_{x, C}(n(x)): x \in E \backslash C\right\}, \text { and } N=\max \{n(x): x \in E \backslash C\} . \text { Show that for all } k \in \mathbb{N}_{0} \\
\qquad P_{x}\left[\tau_{C}>k N\right] \leq(1-\varepsilon)^{k} \quad \forall x \in E .
\end{gathered}
$$

Exercise 8.3

We use the same notation as in Exercise 8.2. Let $A, B \subseteq E$ with $A \cap B=\emptyset$. Suppose that $E \backslash(A \cup B)$ is finite and $P_{x}\left[\tau_{A \cup B}<\infty\right]>0$ for all $x \in E \backslash(A \cup B)$.
(a) Define $h(x)=P_{x}\left[\tau_{A}<\tau_{B}\right]$. Prove that

$$
\begin{equation*}
h(x)=\sum_{y \in E} r_{x, y} h(y) \quad \text { for all } x \in E \backslash(A \cup B) \tag{*}
\end{equation*}
$$

(b) Using Exercise 8.2, show that $P_{x}\left[\tau_{A \cup B}<\infty\right]=1$.
(c) Show that if a function h on E satisfies $(*)$, then

$$
E_{\mu}\left[h\left(X_{n \wedge \tau_{A \cup B}}\right) \mid \mathcal{F}_{n-1}\right]=h\left(X_{(n-1) \wedge \tau_{A \cup B}}\right)
$$

hence $\left(h\left(X_{n \wedge \tau_{A \cup B}}\right)\right)_{n \geq 0}$ is a martingale.
Optional: Use this to show that $h(x)=P_{x}\left(\tau_{A}<\tau_{B}\right)$ is the only solution of $(*)$ that is 1 on A and 0 on B.

Exercise 8.4

The idea of the exercise is to use Fourier transforms to prove necessary and sufficient conditions on the transition probabilities of a random walks for it to be transient or recurrent.

Let us consider a random walk X on \mathbb{Z}, starting at 0 , with probability p of going forward and probability $q=1-p$ to go backward. This is a discrete Markov chain, and following the notation of Exercise 7.3, we have

$$
R=\left(r_{x, y}\right)_{x, y \in E}
$$

where the bounded linear operator R is the one defined in Exercise 7.3. Let $\xi \in[-\pi, \pi)$. We define the function e_{ξ} by

$$
e_{\xi}(x):=\mathrm{e}^{\mathrm{i} x \xi}
$$

(a) Compute $R e_{\xi}$ and $R^{n} e_{\xi}$.
(b) Compute

$$
\int_{[-\pi, \pi)} \frac{d \xi}{2 \pi}\left(R^{n} e_{\xi}\right)(0)
$$

and show that $r_{0,0}(n)=\int_{[-\pi, \pi)} \frac{d \xi}{2 \pi}\left(p \mathrm{e}^{\mathrm{i} x \xi}+q \mathrm{e}^{-\mathrm{i} x \xi}\right)^{n}$.
(c) Let $\varepsilon>0$, and set $p=\frac{1}{2}+\frac{a}{2}, q=\frac{1}{2}-\frac{a}{2}$, for $a \in(-1,1)$. We define

$$
K_{\varepsilon}=\sum_{n \geqslant 0} \mathrm{e}^{-\varepsilon n} r_{0,0}(n)
$$

Compute K_{ε}, and determine whether the random walk is recurent or transient on \mathbb{Z}. Be careful: this depends on a.
(d) Denote by e_{i} the canonical orthonormal basis vector of \mathbb{Z}^{d}. Extend the previous results to a random walk in $\mathbb{Z}^{d}, d \geqslant 2$, for which the transition probabilities are such that

$$
\mathbb{P}\left[X_{n+1}=x+e_{i} \mid X_{n}=x\right]=\mathbb{P}\left[X_{n+1}=x-e_{i} \mid X_{n}=x\right]=\frac{b_{i}}{2},
$$

for some $b_{i}>0$ for $i \in\{1, \ldots, d\}$, with $\sum_{i=1}^{d} b_{i}=1$.
This is a random walk without drift, i.e. $\mathbb{E}\left[X_{n}\right]=0$ for all n, but the probability of taking a step in the dimension i need not be the same for all dimensions $i=1, \ldots, d$.
Hint: consider separately $d=2$ and $d \geqslant 3$.
(e) (Optional) Consider a general random walk on \mathbb{Z}^{d} with arbitrary transition probabilities

$$
\mathbb{P}\left[X_{n+1}=x+e_{i} \mid X_{n}=x\right]=p_{i}, \quad \mathbb{P}\left[X_{n+1}=x-e_{i} \mid X_{n}=x\right]=q_{i},
$$

for some $p_{i}, q_{i}>0$ for $i \in\{1, \ldots, d\}$, with $\sum_{i=1}^{d}\left(p_{i}+q_{i}\right)=1$.
Find necessary and sufficient conditions on the p_{i} 's and the q_{i} 's for the random walk to be transient (resp. recurrent).

