Coordinator Thomas Cayé

Applied Stochastic Processes

Exercise Sheet 11

Please hand in by 12:00 on Tuesday 26.05.2015 in the assistant's box in front of HG E 65.1

Exercise 11.1

Consider a Markov chain in continuous time on a countable state space E. Prove the following: If one of the conditions (a), (b) or (c) holds, then there is no explosion in finite time.

- (a) There exists a constant c > 0, such that $\lambda(x) < c$ for all $x \in E$.
- (b) E is finite.
- (c) Let \mathcal{T} be the set of all transient states of the discrete time Markov chain on the same state space and with transition matrix $(q_{x,y})_{x,y\in E}$. Suppose that $\mathbb{P}'_x[\cap_{n\geq 0}\{X'_n\in\mathcal{T}\}]=0$ for all $x\in E$ and that $\lambda(x)<\infty$ for all $x\in E$.

Give an example of $(\lambda(x))_{x\in E}$ and $(q_{x,y})_{x,y\in E}$ for which the non-explosion condition is false.

Exercise 11.2

Let $(X_t)_{t>0}$ denote a homogeneous continuous-time Markov chain with generator

$$\Lambda = \frac{1}{4} \begin{pmatrix} -8 & 3 & 5\\ 6 & -8 & 2\\ 2 & 2 & -4 \end{pmatrix}$$

Compute the matrix R(t).

Exercise 11.3

Linear Growth with Immigration. We consider a birth and death process $(X_t)_{t\geq 0}$ with $\lambda_i = \lambda i + a$ and $\mu_i = \mu i$, $\lambda, \mu, a > 0$. We define $M(t) = E[X_t]$.

- (a) Show that $(X_t)_{t\geq 0}$ fulfills the non-explosion assumption.
- (b) Use the forward Kolmogorov differential equations to derive the following differential equation for M(t)

$$M'(t) = a + (\lambda - \mu)M(t),$$

with initial condition M(0) = i, if X(0) = i.

(c) Solve the differential equation for M.

Exercise 11.4

Consider a pure jump process with state space $E = \mathbb{N}$, transition probability

$$q_{x,y} = \begin{cases} p, & \text{if } y = x + 1, \ x \ge 1 \\ q, & \text{if } y = 0, \ x \ge 1, \\ 1, & \text{if } y = 1, \ x = 0, \\ 0 & \text{otherwise}, \end{cases}$$

with p + q = 1, p, q > 0, and an arbitrary jump rate function $\lambda(\cdot) : \mathbb{N} \to (0, \infty)$.

- (a) Show that the discrete skeleton X'_n is an irreducible discrete time Markov chain on \mathbb{N} and that all states $x \in \mathbb{N}$ are positive recurrent for $(X'_n)_{n \ge 0}$.
- (b) Deduce from (a) that we have a pure jump process with no explosion for any jump rate function $\lambda(\cdot)$.
- (c) Show that

$$E_0[\tilde{H}_0] = \frac{1}{\lambda(0)} + \sum_{m=1}^{\infty} \frac{1}{\lambda(m)} p^{m-1},$$

where

 $\tilde{H}_0 = \inf\{t > 0, \ X_t = 0 \text{ and there is } s \in (0,t) \text{ with } X_s \neq 0\}.$

(d) Find a jump rate function $\lambda(\cdot)$ such that $E_0[\tilde{H}_0] = \infty$.

Exercise 11.5

This problem uses material that will be covered in class on 26.05, and is therefore due only on 28.05.

Birth and death process. Consider a birth and death process on \mathbb{N} with birth rates $(\lambda_i)_{i\geq 0}$ and death rates $(\mu_i)_{i\geq 0}$, $\mu_0 = 0$. Assume that there is no explosion in finite time.

- (a) Under which conditions does a stationary distribution exist?
- (b) Compute the stationary distribution if it exists.