Applied Stochastic Processes

Solution Sheet 3

Solution 3.1

(a) For $n \in \mathbb{N}$ set $Y_{n}:=\sum_{i=1}^{n}\left|X_{i}\right|$ and note that the $\left|X_{i}\right|$ are i.i.d. and independent of τ. Hence, we have by the monotone convergence theorem and independence of the X_{i} and τ

$$
\begin{aligned}
\mathbb{E}\left[\left|S_{\tau}\right|\right] & =\mathbb{E}\left[\sum_{k=1}^{\infty}\left|S_{k}\right| \mathbf{1}(\tau=k)\right] \leq \mathbb{E}\left[\sum_{k=1}^{\infty} Y_{k} \mathbf{1}(\tau=k)\right] \\
& =\sum_{k=1}^{\infty} \mathbb{E}\left[Y_{k} \mathbf{1}(\tau=k)\right]=\sum_{k=1}^{\infty} \mathbb{E}\left[Y_{k}\right] \mathbb{E}[\mathbf{1}(\tau=k)] \\
& =\mathbb{E}\left[Y_{1}\right]\left(\sum_{k=0}^{\infty} k \mathbb{P}[\tau=k]\right)=\mathbb{E}\left[Y_{1}\right] \mathbb{E}[\tau]<\infty .
\end{aligned}
$$

Next, by independence of the X_{i} and τ we have a.s.

$$
\mathbb{E}\left[S_{\tau} \mid \tau\right]=\left.\mathbb{E}\left[S_{k}\right]\right|_{k=\tau}=\left.\mu k\right|_{k=\tau}=\mu \tau
$$

yielding the first assertion. The second assertion follows immediately from this by the tower property of conditional expectations.
(b) For all $n \in \mathbb{N}$ we have

$$
\begin{aligned}
\mathbb{E}\left[\left(S_{n}\right)^{2}\right] & =\sum_{i, j=1}^{n} \mathbb{E}\left[X_{i} X_{j}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}^{2}\right]+\sum_{i, j=1, i \neq j}^{n} \mathbb{E}\left[X_{i} X_{j}\right] \\
& =n\left(\sigma^{2}+\mu^{2}\right)+n(n-1) \mu^{2}=n \sigma^{2}+n^{2} \mu^{2}
\end{aligned}
$$

Next, since $\left(S_{\tau}\right)^{2} \geq 0$, the conditional expectation $\mathbb{E}\left[\left(S_{\tau}\right)^{2} \mid \tau\right]$ is well-defined. By independence of the X_{i} and τ we have a.s.

$$
\mathbb{E}\left[\left(S_{\tau}\right)^{2} \mid \tau\right]=\left.\mathbb{E}\left[\left(S_{k}\right)^{2}\right]\right|_{k=\tau}=k \sigma^{2}+\left.k^{2} \mu^{2}\right|_{k=\tau}=\sigma^{2} \tau+\mu^{2} \tau^{2}
$$

establishing the first assertion. By the tower property of conditional expectations we get

$$
\mathbb{E}\left[\left(S_{\tau}\right)^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[\left(S_{\tau}\right)^{2} \mid \tau\right]\right]=\mathbb{E}\left[\sigma^{2} \tau+\mu^{2} \tau^{2}\right]=\sigma^{2} \mathbb{E}[\tau]+\mu^{2} \mathbb{E}\left[\tau^{2}\right]
$$

Putting this together with the result from part (a), we get

$$
\begin{aligned}
\operatorname{Var}\left(S_{\tau}\right) & =\mathbb{E}\left[\left(S_{\tau}\right)^{2}\right]-\mathbb{E}\left[S_{\tau}\right]^{2}=\sigma^{2} \mathbb{E}[\tau]+\mu^{2} \mathbb{E}\left[\tau^{2}\right]-\mu^{2} \mathbb{E}[\tau]^{2} \\
& =\sigma^{2} \mathbb{E}[\tau]+\mu^{2} \operatorname{Var}[\tau]
\end{aligned}
$$

Solution 3.2

(a) For $k \in \mathbb{N}_{0}$ denote by $\mu^{* k}$ the k-fold convolution of μ, where we agree that $\mu^{* 1}=\mu$ and $\mu^{* 0}:=\delta_{0}$ (the Dirac measure at 0). Fix $t>0$ and $B \in \mathcal{B}(\mathbb{R})$. Using that N_{t} and $\left(X_{k}\right)_{k \in \mathbb{N}}$ are independent and $N_{t} \sim \operatorname{Poi}(\lambda t)$, we have

$$
\begin{align*}
\mathbb{P}\left[Z_{t} \in B\right] & =\sum_{k=0}^{\infty} \mathbb{P}\left[Z_{t} \in B, N_{t}=k\right]=\sum_{k=0}^{\infty} \mathbb{P}\left[\sum_{j=1}^{k} X_{j} \in B, N_{t}=k\right] \\
& =\sum_{k=0}^{\infty} \mathbb{P}\left[\sum_{j=1}^{k} X_{j} \in B\right] \mathbb{P}\left[N_{t}=k\right]=\sum_{k=0}^{\infty} \mu^{* k}(B) \frac{(\lambda t)^{k}}{k!} \mathrm{e}^{-\lambda t} \tag{1}
\end{align*}
$$

Next, fix $t>0$ and $u \in \mathbb{R}$. Denote by φ_{X} the common characteristic function of the X_{i}. Using that N_{t} and $\left(X_{k}\right)_{k \in \mathbb{N}}$ are independent, the X_{i} are i.i.d. and $N_{t} \sim \operatorname{Poi}(\lambda t)$, we have by the tower property of conditional expectations and the exponential series

$$
\begin{align*}
\mathbb{E}\left[\mathrm{e}^{\mathrm{i} u Z_{t}}\right] & =\mathbb{E}\left[\mathbb{E}\left[\mathrm{e}^{\mathrm{i} u Z_{t}} \mid N_{t}\right]\right]=\mathbb{E}\left[\left.\mathbb{E}\left[\mathrm{e}^{\mathrm{i} u \sum_{j=1}^{k} X_{j}}\right]\right|_{k=N_{t}}\right] \\
& =\mathbb{E}\left[\varphi_{X}(u)^{N_{t}}\right]=\sum_{k=0}^{\infty} \frac{\left(\varphi_{X}(u) \lambda t\right)^{k}}{k!} \mathrm{e}^{-\lambda t}=\mathrm{e}^{\varphi_{X}(u) \lambda t-\lambda t} \\
& =\mathrm{e}^{\lambda t\left(\varphi_{X}(u)-1\right)} \tag{2}
\end{align*}
$$

(b) Denote by $\left(S_{k}\right)_{k \in \mathbb{N}}$ the sequence of successive jump times of N. Then we have for all $0 \leq r<t$

$$
\begin{equation*}
Z_{t}-Z_{r}=\left(\sum_{k=1}^{\infty} X_{k} \mathbf{1}\left(S_{k} \leq t\right)\right)-\left(\sum_{k=1}^{\infty} X_{k} \mathbf{1}\left(S_{k} \leq r\right)\right)=\sum_{k=1}^{\infty} X_{k} \mathbf{1}\left(r<S_{k} \leq t\right) \tag{3}
\end{equation*}
$$

Note that the above sums are for all ω finite, and so the rearrangement is justified. Next, fix $t>0$ and let $0=t_{0}<t_{1}<\cdots<t_{n}=t$ and $w_{1}, \ldots, w_{n} \in \mathbb{R}$. Define the function $f: \mathbb{R} \times(0, t] \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
f(x, s):=\sum_{j=1}^{n} w_{j} x \mathbf{1}\left(t_{j-1}<s \leq t_{j}\right) \tag{4}
\end{equation*}
$$

Note the following simple identity:

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} f(x, s)}-1=\sum_{j=1}^{n}\left(\mathrm{e}^{\mathrm{i} w_{j} x}-1\right) \mathbf{1}\left(t_{j-1}<s \leq t_{j}\right) \tag{5}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\sum_{j=1}^{n} w_{j}\left(Z_{t_{j}}-Z_{t_{j-1}}\right)=\sum_{k=1}^{\infty} f\left(X_{k}, S_{k}\right) \tag{6}
\end{equation*}
$$

To simplify the notation, we may assume (after possibly enlarging the original probability space) that there exists a sequence $\left(U_{k}\right)_{k \in \mathbb{N}}$ of i.i.d. random variables which are uniformly distributed on $(0, t)$ and independent of $\left(X_{k}\right)_{k \in \mathbb{N}}$. Then for all $m \in \mathbb{N}$, by the order statistics property of the Poisson process and by invariance of $\sum_{k=1}^{m} f\left(X_{k}, S_{k}\right)$ under permutations of the indices, the conditional distribution of $\sum_{k=1}^{m} f\left(X_{k}, S_{k}\right)$ given $N_{t}=m$ is equal to the
distribution of $\sum_{k=1}^{m} f\left(X_{k}, U_{k}\right)$. Using this, the tower property of conditional expectations and (5), we get

$$
\begin{align*}
& \mathbb{E}\left[\mathrm{e}^{\mathrm{i}\left(\sum_{j=1}^{n} w_{j}\left(Z_{t_{j}}-Z_{t_{j-1}}\right)\right)}\right]=\mathbb{E}\left[\mathrm{e}^{\mathrm{i} \sum_{k=1}^{\infty} f\left(X_{k}, S_{k}\right)}\right]=\mathbb{E}\left[\mathbb{E}\left[\mathrm{e}^{\mathrm{i} \sum_{k=1}^{\infty} f\left(X_{k}, S_{k}\right)} \mid N_{t}\right]\right] \\
&=\sum_{m=0}^{\infty} \frac{(\lambda t)^{m}}{m!} \mathrm{e}^{-\lambda t} \mathbb{E}\left[\mathrm{e}^{\mathrm{i} \sum_{k=1}^{\infty} f\left(X_{k}, S_{k}\right)} \mid N_{t}=m\right] \\
&=\sum_{m=0}^{\infty} \frac{(\lambda t)^{m}}{m!} \mathrm{e}^{-\lambda t} \mathbb{E}\left[\mathrm{e}^{\mathrm{i} \sum_{k=1}^{m} f\left(X_{k}, S_{k}\right)} \mid N_{t}=m\right] \\
&=\sum_{m=0}^{\infty} \frac{(\lambda t)^{m}}{m!} \mathrm{e}^{-\lambda t} \mathbb{E}\left[\mathrm{e}^{\mathrm{i} \sum_{k=1}^{m} f\left(X_{k}, U_{k}\right)}\right] \\
&=\sum_{m=0}^{\infty} \frac{(\lambda t)^{m}}{m!} \mathrm{e}^{-\lambda t} \mathbb{E}\left[\mathrm{e}^{\mathrm{i} f\left(X_{1}, U_{1}\right)}\right]^{m} \\
&=\mathrm{e}^{\lambda t\left(\mathbb{E}\left[\mathrm{e}^{\mathrm{i} f\left(X_{1}, U_{1}\right)}\right]-1\right)}=\mathrm{e}^{\lambda t \mathbb{E}\left[\mathrm{e}^{\mathrm{i} f\left(X_{1}, U_{1}\right)}-1\right]} \\
&=\mathrm{e}^{\lambda t \mathbb{E}\left[\sum_{j=1}^{n}\left(\mathrm{e}^{\mathrm{i} w_{j} X_{1}}-1\right) \mathbf{1}\left(t_{j-1}<U_{1} \leq t_{j}\right)\right]} \\
&=\mathrm{e}^{\lambda t \sum_{j=1}^{n} \mathbb{E}\left[\mathrm{e}^{\mathrm{i} w_{j} X_{1}}-1\right] \mathbb{E}\left[\mathbf{1}\left(t_{j-1}<U_{1} \leq t_{j}\right)\right]} \\
&=\prod_{j=1}^{n} \mathrm{e}^{\lambda\left(t_{j}-t_{j-1}\right) \mathbb{E}\left[\mathrm{e}^{\mathrm{i} w_{j} X_{1}}-1\right]}=\prod_{j=1}^{n} \mathrm{e}^{\lambda\left(t_{j}-t_{j-1}\right)\left(\varphi_{X}\left(w_{j}\right)-1\right)} . \tag{7}
\end{align*}
$$

Comparing this with (2) shows that Z has stationary and independent increments.
(c) It follows immediately from the definition that Z in this case is a counting process and increases by jumps of size 1 . Moreover, by part (b), Z has stationary and independent increments. Therefore it remains to check that for all $t>0, Z_{t}$ is Poisson-distributed with parameter $p \lambda t$. Indeed, with the notation from part (a) we have

$$
\begin{equation*}
\varphi_{X}(u)=p \mathrm{e}^{i u}+(1-p)=1+p\left(\mathrm{e}^{i u}-1\right) \tag{8}
\end{equation*}
$$

Hence, by part (a) we have

$$
\begin{equation*}
\mathbb{E}\left[\mathrm{e}^{\mathrm{i} u Z_{t}}\right]=\mathrm{e}^{\lambda t\left(\varphi_{X}(u)-1\right)}=\mathrm{e}^{p \lambda t\left(\mathrm{e}^{i u}-1\right)} \tag{9}
\end{equation*}
$$

But this is exactly the characteristic function of a Poisson-distributed random variable with parameter $p \lambda t$.

Solution 3.3

As showed during the lecture, $\mathbb{P}\left[T_{1}>t\right]=\mathbb{P}\left[N_{t}=0\right]=\mathrm{e}^{-\lambda t}$ for $t>0$. This implies that $T_{1}=S_{1}$ is $\operatorname{Exp}(\lambda)$-distributed and therefore almost surely finite.

Let $k \in \mathbb{N}$ and $0 \leqslant s_{1} \leqslant t_{1} \leqslant s_{2} \leqslant t_{2} \leqslant \ldots \leqslant s_{k} \leqslant t_{k}<\infty$. We get

$$
\begin{aligned}
\mathbb{P}\left[s_{1}\right. & \left.<S_{1} \leqslant t_{1}, s_{2}<S_{2} \leqslant t_{2}, \ldots, s_{k}<S_{k} \leqslant t_{k}\right] \\
& =\mathbb{P}\left[N_{s_{1}}=0, N_{t_{1}}-N_{s_{1}}=1, N_{s_{2}}-N_{t_{1}}=0, N_{t_{2}}-N_{s_{2}}=1, \ldots, N_{s_{k}}-N_{t_{k-1}}=0, N_{t_{k}}-N_{s_{k}} \geqslant 1\right] \\
& =\mathrm{e}^{-\lambda s_{1}} \lambda\left(t_{1}-s_{1}\right) \mathrm{e}^{-\lambda\left(t_{1}-s_{1}\right)} \mathrm{e}^{-\lambda\left(s_{2}-t_{1}\right)} \lambda\left(t_{2}-s_{2}\right) \mathrm{e}^{-\lambda\left(t_{2}-s_{2}\right)} \ldots \mathrm{e}^{-\lambda\left(s_{k}-t_{k-1}\right)}\left(1-\mathrm{e}^{-\lambda\left(t_{k}-s_{k}\right)}\right) \\
& =\lambda^{k-1}\left(\mathrm{e}^{-\lambda s_{k}}-\mathrm{e}^{-\lambda t_{k}}\right) \prod_{i=1}^{k-1}\left(t_{i}-s_{i}\right) \\
& =\int_{s_{k}}^{t_{k}} \int_{s_{k-1}}^{t_{k-1}} \cdots \int_{s_{1}}^{t_{1}} \lambda^{k} \mathrm{e}^{-\lambda y_{k}} d y_{1} d y_{2} \ldots d y_{k} .
\end{aligned}
$$

We prove by induction that the S_{i} 's are \mathbb{P}-a.s. finite.
Assume that $S_{1}, S_{2}, \ldots, S_{k-1}$ are \mathbb{P}-a.s. finite. In a similar way as above, we have

$$
\mathbb{P}\left[s_{1}<S_{1} \leqslant t_{1}, s_{2}<S_{2} \leqslant t_{2}, \ldots, s_{k}<S_{k}\right]=\lambda^{k-1} \mathrm{e}^{-\lambda s_{k}} \prod_{i=1}^{k-1}\left(t_{i}-s_{i}\right),
$$

which converges to 0 as s_{k} goes to ∞. So we have

$$
\mathbb{P}\left[s_{1}<S_{1} \leqslant t_{1}, s_{2}<S_{2} \leqslant t_{2}, \ldots, s_{k-1}<S_{k-1} \leqslant t_{k-1}, S_{k}=\infty\right]=0 .
$$

Set $s_{1}=0, t_{i}=s_{i+1}$ for $i \in\{1, \ldots, k-2\}$, let t_{k-1} go to ∞, and summing over $\left(s_{2}, s_{3}, \ldots, s_{k-1}\right) \in \mathbb{Q}^{k-2}$ we get

$$
\mathbb{P}\left[0<S_{1}<S_{2}<\ldots<S_{k-1}<\infty, S_{k}=\infty\right]=0 .
$$

Since $S_{1}, S_{2}, \ldots, S_{k-1}$ are \mathbb{P}-a.s. finite by induction hypothesis, we conclude that S_{k} is \mathbb{P}-a.s. finite. Therefore all the S_{i} 's are \mathbb{P}-a.s. finite.

The sets $\left(s_{1}, t_{1}\right] \times\left(s_{2}, t_{2}\right] \times \ldots \times\left(s_{k}, t_{k}\right]$ such that $0 \leqslant s_{1} \leqslant t_{1} \leqslant s_{2} \leqslant t_{2} \leqslant \ldots \leqslant s_{k} \leqslant t_{k}<\infty$ generate the Borel σ algebra on $\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k} \mid x_{1}<x_{2}<\ldots<x_{k}\right\}$. Therefore the density of the distribution of ($S_{1}, S_{2}, \ldots, S_{k}$) is given by

$$
f_{\left(S_{1}, S_{2}, \ldots, S_{k}\right)}\left(s_{1}, s_{2}, \ldots, s_{k}\right)=\lambda^{k} \mathrm{e}^{-\lambda y_{k}} \mathbf{1}\left(s_{1}<s_{2}<\ldots<s_{k}\right) .
$$

The proof that the T_{i} 's are i.i.d. $\operatorname{Exp}(\lambda)$-distributed was done in the lecture.

