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Solution 3.1

(a) For n ∈ N set Yn :=
∑n

i=1 |Xi| and note that the |Xi| are i.i.d. and independent of τ .
Hence, we have by the monotone convergence theorem and independence of the Xi and τ

E[|Sτ |] = E
[ ∞∑
k=1

|Sk|1 (τ = k)
]
≤ E

[ ∞∑
k=1

Yk1 (τ = k)
]

=

∞∑
k=1

E[Yk1 (τ = k)] =

∞∑
k=1

E[Yk]E[1 (τ = k)]

= E[Y1]
( ∞∑
k=0

kP[τ = k]
)
= E[Y1]E[τ ] <∞.

Next, by independence of the Xi and τ we have a.s.

E[Sτ |τ ] = E[Sk]
∣∣∣
k=τ

= µk
∣∣∣
k=τ

= µτ,

yielding the first assertion. The second assertion follows immediately from this by the
tower property of conditional expectations.

(b) For all n ∈ N we have

E[(Sn)2] =
n∑

i,j=1

E[XiXj ] =

n∑
i=1

E[X2
i ] +

n∑
i,j=1,i 6=j

E[XiXj ]

= n(σ2 + µ2) + n(n− 1)µ2 = nσ2 + n2µ2.

Next, since (Sτ )
2 ≥ 0, the conditional expectation E[(Sτ )2|τ ] is well-defined. By indepen-

dence of the Xi and τ we have a.s.

E[(Sτ )2|τ ] = E[(Sk)2]
∣∣∣
k=τ

= kσ2 + k2µ2
∣∣∣
k=τ

= σ2τ + µ2τ2,

establishing the first assertion. By the tower property of conditional expectations we get

E[(Sτ )2] = E[E[(Sτ )2|τ ]] = E[σ2τ + µ2τ2] = σ2E[τ ] + µ2E[τ2].

Putting this together with the result from part (a), we get

Var(Sτ ) = E[(Sτ )2]− E[Sτ ]2 = σ2E[τ ] + µ2E[τ2]− µ2E[τ ]2

= σ2E[τ ] + µ2Var[τ ].



Solution 3.2

(a) For k ∈ N0 denote by µ∗k the k-fold convolution of µ, where we agree that µ∗1 = µ and
µ∗0 := δ0 (the Dirac measure at 0). Fix t > 0 and B ∈ B(R). Using that Nt and (Xk)k∈N
are independent and Nt ∼ Poi(λt), we have

P[Zt ∈ B] =

∞∑
k=0

P[Zt ∈ B,Nt = k] =

∞∑
k=0

P
[ k∑
j=1

Xj ∈ B,Nt = k
]

=

∞∑
k=0

P
[ k∑
j=1

Xj ∈ B
]
P[Nt = k] =

∞∑
k=0

µ∗k(B)
(λt)k

k!
e−λt. (1)

Next, fix t > 0 and u ∈ R. Denote by ϕX the common characteristic function of the Xi.
Using that Nt and (Xk)k∈N are independent, the Xi are i.i.d. and Nt ∼ Poi(λt), we have
by the tower property of conditional expectations and the exponential series

E
[
eiuZt

]
= E

[
E
[
eiuZt

∣∣Nt

]]
= E

[
E
[
eiu

∑k
j=1Xj

] ∣∣∣
k=Nt

]
= E

[
ϕX(u)

Nt
]
=
∞∑
k=0

(ϕX(u)λt)
k

k!
e−λt = eϕX(u)λt−λt

= eλt(ϕX(u)−1). (2)

(b) Denote by (Sk)k∈N the sequence of successive jump times of N . Then we have for all
0 ≤ r < t

Zt − Zr =
( ∞∑
k=1

Xk1 (Sk ≤ t)
)
−
( ∞∑
k=1

Xk1 (Sk ≤ r)
)
=
∞∑
k=1

Xk1 (r < Sk ≤ t) . (3)

Note that the above sums are for all ω finite, and so the rearrangement is justified. Next,
fix t > 0 and let 0 = t0 < t1 < · · · < tn = t and w1, . . . , wn ∈ R. Define the function
f : R× (0, t]→ R by

f(x, s) :=
n∑
j=1

wjx1 (tj−1 < s ≤ tj) . (4)

Note the following simple identity:

eif(x,s) − 1 =
n∑
j=1

(
eiwjx − 1

)
1 (tj−1 < s ≤ tj) . (5)

Moreover, we have
n∑
j=1

wj(Ztj − Ztj−1) =
∞∑
k=1

f(Xk, Sk). (6)

To simplify the notation, we may assume (after possibly enlarging the original probability
space) that there exists a sequence (Uk)k∈N of i.i.d. random variables which are uniformly
distributed on (0, t) and independent of (Xk)k∈N. Then for allm ∈ N, by the order statistics
property of the Poisson process and by invariance of

∑m
k=1 f(Xk, Sk) under permutations

of the indices, the conditional distribution of
∑m

k=1 f(Xk, Sk) given Nt = m is equal to the



distribution of
∑m

k=1 f(Xk, Uk). Using this, the tower property of conditional expectations
and (5), we get

E
[
ei(

∑n
j=1 wj(Ztj−Ztj−1 ))

]
= E

[
ei

∑∞
k=1 f(Xk,Sk)

]
= E

[
E
[
ei

∑∞
k=1 f(Xk,Sk)

∣∣Nt

]]
=
∞∑
m=0

(λt)m

m!
e−λtE

[
ei

∑∞
k=1 f(Xk,Sk)

∣∣Nt = m
]

=
∞∑
m=0

(λt)m

m!
e−λtE

[
ei

∑m
k=1 f(Xk,Sk)

∣∣Nt = m
]

=

∞∑
m=0

(λt)m

m!
e−λtE

[
ei

∑m
k=1 f(Xk,Uk)

]
=
∞∑
m=0

(λt)m

m!
e−λtE

[
eif(X1,U1)

]m
= eλt(E[e

if(X1,U1)]−1) = eλtE[e
if(X1,U1)−1]

= eλtE[
∑n

j=1(e
iwjX1−1)1(tj−1<U1≤tj)]

= eλt
∑n

j=1 E[e
iwjX1−1]E[1(tj−1<U1≤tj)]

=
n∏
j=1

eλ(tj−tj−1)E[eiwjX1−1] =
n∏
j=1

eλ(tj−tj−1)(ϕX(wj)−1). (7)

Comparing this with (2) shows that Z has stationary and independent increments.

(c) It follows immediately from the definition that Z in this case is a counting process and
increases by jumps of size 1. Moreover, by part (b), Z has stationary and independent
increments. Therefore it remains to check that for all t > 0, Zt is Poisson-distributed with
parameter pλt. Indeed, with the notation from part (a) we have

ϕX(u) = peiu + (1− p) = 1 + p(eiu − 1). (8)

Hence, by part (a) we have

E
[
eiuZt

]
= eλt(ϕX(u)−1) = epλt(e

iu−1). (9)

But this is exactly the characteristic function of a Poisson-distributed random variable with
parameter pλt.

Solution 3.3

As showed during the lecture, P [T1 > t] = P [Nt = 0] = e−λt for t > 0. This implies that T1 = S1
is Exp(λ)-distributed and therefore almost surely finite.

Let k ∈ N and 0 6 s1 6 t1 6 s2 6 t2 6 . . . 6 sk 6 tk <∞. We get

P [s1 < S1 6 t1, s2 < S2 6 t2, . . . , sk < Sk 6 tk]

= P
[
Ns1 = 0, Nt1 −Ns1 = 1, Ns2 −Nt1 = 0, Nt2 −Ns2 = 1, . . . , Nsk −Ntk−1

= 0, Ntk −Nsk > 1
]

= e−λs1λ(t1 − s1)e−λ(t1−s1)e−λ(s2−t1)λ(t2 − s2)e−λ(t2−s2) . . . e−λ(sk−tk−1)
(
1− e−λ(tk−sk)

)
= λk−1

(
e−λsk − e−λtk

) k−1∏
i=1

(ti − si)

=

∫ tk

sk

∫ tk−1

sk−1

. . .

∫ t1

s1

λke−λykdy1dy2 . . . dyk.



We prove by induction that the Si’s are P-a.s. finite.
Assume that S1, S2, . . . , Sk−1 are P-a.s. finite. In a similar way as above, we have

P [s1 < S1 6 t1, s2 < S2 6 t2, . . . , sk < Sk] = λk−1e−λsk
k−1∏
i=1

(ti − si),

which converges to 0 as sk goes to ∞. So we have

P [s1 < S1 6 t1, s2 < S2 6 t2, . . . , sk−1 < Sk−1 6 tk−1, Sk =∞] = 0.

Set s1 = 0, ti = si+1 for i ∈ {1, . . . , k−2}, let tk−1 go to∞, and summing over (s2, s3, . . . , sk−1) ∈ Qk−2

we get
P [0 < S1 < S2 < . . . < Sk−1 <∞, Sk =∞] = 0.

Since S1, S2, . . . , Sk−1 are P-a.s. finite by induction hypothesis, we conclude that Sk is P-a.s.
finite. Therefore all the Si’s are P-a.s. finite.

The sets (s1, t1]× (s2, t2]× . . .× (sk, tk] such that 0 6 s1 6 t1 6 s2 6 t2 6 . . . 6 sk 6 tk <∞
generate the Borel σ algebra on {(x1, . . . , xk) ∈ Rk | x1 < x2 < . . . < xk}. Therefore the density
of the distribution of (S1, S2, . . . , Sk) is given by

f(S1,S2,...,Sk)(s1, s2, . . . , sk) = λke−λyk1 (s1 < s2 < . . . < sk) .

The proof that the Ti’s are i.i.d. Exp(λ)-distributed was done in the lecture.


