Applied Stochastic Processes

Solution Sheet 4

Solution 4.1

Let $t \geqslant 0$.
(a) For all $x \geqslant 0$:

$$
\mathbb{P}\left[\gamma_{t}>x\right]=\mathbb{P}\left[S_{N_{t}+1}>t+x\right]=\mathbb{P}\left[N_{t+x}-N_{t}=0\right]=\mathbb{P}\left[N_{x}=0\right]=\exp (-\lambda x)
$$

Thus, the distribution function $F_{\gamma_{t}}$ of γ_{t} is given by

$$
F_{\gamma_{t}}(x)=\mathbf{1}(x \geqslant 0)(1-\exp (-\lambda x))
$$

For all $x \geqslant 0$:

$$
\begin{aligned}
\mathbb{P}\left[\delta_{t} \geqslant x\right]=\mathbb{P}\left[S_{N_{t}} \leq t-x\right]=\mathbf{1} & (0 \leq x \leq t) \mathbb{P}\left[N_{t}-N_{t-x}=0\right] \\
& =\mathbf{1}(0 \leq x \leq t) \mathbb{P}\left[N_{x}=0\right]=\mathbf{1}(0 \leq x \leq t) \exp (-\lambda x)
\end{aligned}
$$

This implies

$$
F_{\delta_{t}}(x)=\mathbf{1}(0 \leq x<t)(1-\exp (-\lambda x))+\mathbf{1}(x \geqslant t) .
$$

(b) For all $x, y \geqslant 0$:

$$
\begin{aligned}
\mathbb{P}\left[\gamma_{t}>x, \delta_{t} \geqslant y\right] & =\mathbf{1}(0 \leq y \leq t) \mathbb{P}\left[S_{N_{t}+1}>t+x, S_{N_{t}} \leq t-y\right] \\
& =\mathbf{1}(0 \leq y \leq t) \mathbb{P}\left[N_{t+x}-N_{t-y}=0\right] \\
& =\mathbb{P}\left[N_{t+x}-N_{t}=0\right] \mathbf{1}(0 \leq y \leq t) \mathbb{P}\left[N_{t}-N_{t-y}=0\right] \\
& =\mathbb{P}\left[\gamma_{t}>x\right] \mathbb{P}\left[\delta_{t} \geqslant y\right] .
\end{aligned}
$$

This implies that γ_{t} and δ_{t} are independent. Hence, $P\left[\gamma_{t} \leq x, \delta_{t} \leq y\right]=F_{\gamma_{t}}(x) F_{\delta_{t}}(y)$.
(c) The distribution function $F_{\beta_{t}}$ is given as the convolution of $F_{\gamma_{t}}$ and $F_{\delta_{t}}$:

$$
F_{\beta_{t}}(x)=\int_{\mathbb{R}} F_{\gamma_{t}}(x-y) d F_{\delta_{t}}(y)
$$

For $0 \leq x<t$:

$$
F_{\beta_{t}}(x)=\int_{0}^{x}\left(1-\mathrm{e}^{-\lambda(x-y)}\right) \lambda \mathrm{e}^{-\lambda y} d y=1-\exp (-\lambda x)(1+\lambda x)
$$

For $x \geqslant t$:

$$
\begin{aligned}
& F_{\beta_{t}}(x) \\
& \qquad \begin{aligned}
&=\int_{0}^{t}(1-\exp (-\lambda(x-y))) \lambda \exp (-\lambda y) d y+(1-\exp (-\lambda(x-t))) \exp (-\lambda t) \\
&=1-\exp (-\lambda x)(1+\lambda t)
\end{aligned}
\end{aligned}
$$

(d) $F_{\beta_{t}}$ has the density

$$
f_{\beta_{t}}(x)=\mathbf{1}(0 \leq x<t) \lambda^{2} x \exp (-\lambda x)+\mathbf{1}(x \geqslant t) \lambda(1+\lambda t) \exp (-\lambda x)
$$

Hence,

$$
\mathrm{E}\left[\beta_{t}\right]=\int_{0}^{\infty} x f_{\beta_{t}}(x) d x=\frac{2-\exp (-\lambda t)}{\lambda}
$$

It follows for $t>0$

$$
\mathrm{E}\left[\beta_{t}\right]>\frac{1}{\lambda}=\mathrm{E}\left[T_{i}\right]
$$

and

$$
\lim _{t \rightarrow \infty} \mathrm{E}\left[\beta_{t}\right]=\frac{2}{\lambda}=2 \mathrm{E}\left[T_{i}\right]
$$

We discover that the interval in which t falls is not a "typical"' interval. To give a short explanation note that the probability of $t>0$ lying in a large interval is larger than the probability of t being contained in a short interval. See section 5.2 in Queueing systems by L. Kleinrock.

Solution 4.2

Let $R(t)=\int_{0}^{t} \alpha s d s=\frac{\alpha}{2} t^{2}$. Then we can make the following time change

$$
\left\{W_{n} \leq t\right\}=\left\{N_{t} \geq n\right\}=\left\{\tilde{N}_{R(t)} \geq n\right\}=\left\{\tilde{W}_{n} \leq R(t)\right\}
$$

where $\left(\tilde{N}_{t}\right)_{t \geq 0}$ is a homogeneous Poisson process with rate 1 . We know that \tilde{W}_{n} is $\operatorname{Gamma}(n, 1)$ distributed (as it is the sum of n i.i.d. $\operatorname{Exp}(1)$ random variables), hence

$$
\begin{aligned}
\mathbb{P}\left[W_{n} \leq t\right] & =\mathbb{P}\left[\tilde{W}_{n} \leq R(t)\right] \\
& =\int_{0}^{R(t)} \frac{1}{(n-1)!} s^{n-1} \mathrm{e}^{-s} d s \\
& =\int_{0}^{t} \frac{1}{(n-1)!} 2\left(\frac{\alpha}{2}\right)^{n} s^{2 n-1} \mathrm{e}^{-\frac{\alpha}{2} s^{2}} d s
\end{aligned}
$$

For $0 \leq s_{1} \leq t_{1}<s_{2} \leq t_{2}$ we have

$$
\begin{aligned}
\mathbb{P}\left[s_{1}<W_{1} \leq t_{1}, s_{2}<W_{2} \leq t_{2}\right] & =\mathbb{P}\left[N_{s_{1}}=0, N_{t_{1}}-N_{s_{1}}=1, N_{s_{2}}-N_{t_{1}}=0, N_{t_{2}}-N_{s_{2}} \geq 1\right] \\
& =\left(\mathrm{e}^{-R\left(s_{2}\right)}-\mathrm{e}^{-R\left(t_{2}\right)}\right)\left(R\left(t_{1}\right)-R\left(s_{1}\right)\right) \\
& =\int_{s_{1}<y_{1} \leq t_{1}, s_{2}<y_{2} \leq t_{2}} \mathrm{e}^{-R\left(y_{2}\right)} \rho\left(y_{1}\right) \rho\left(y_{2}\right) d y_{1} d y_{2},
\end{aligned}
$$

using that $\left(N_{t}\right)_{t \geq 0}$ has independent increments and the fact that $N_{t}-N_{s}$ for $0 \leq s<t$ is Poisson distributed with parameter $(R(t)-R(s))$.

The density of the joint distribution of $\left(W_{1}, W_{2}\right)$ is given by

$$
f\left(y_{1}, y_{2}\right)=\mathrm{e}^{-R\left(y_{2}\right)} \rho\left(y_{1}\right) \rho\left(y_{2}\right) \mathbf{1}\left(0<y_{1}<y_{2}\right)=\alpha^{2} y_{1} y_{2} \mathrm{e}^{-\frac{\alpha}{2} y_{2}^{2}} \mathbf{1}\left(0<y_{1}<y_{2}\right)
$$

Let $h\left(t_{1}, t_{2}\right)=\left(t_{1}, t_{1}+t_{2}\right)$. Then we obtain

$$
\begin{aligned}
\mathbb{P}\left[\left(W_{1}, W_{2}-W_{1}\right) \in A\right] & =\mathbb{P}\left[\left(W_{1}, W_{2}\right) \in h(A)\right] \\
& =\int_{h(A)} f\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \\
& =\int_{A} f \circ h\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \\
& =\int_{A} \alpha^{2} y_{1}\left(y_{1}+y_{2}\right) \mathrm{e}^{-\frac{\alpha}{2}\left(y_{1}+y_{2}\right)^{2}} \mathbf{1}\left(y_{1}>0\right) \mathbf{1}\left(y_{2}>0\right) d y_{1} d y_{2}
\end{aligned}
$$

Hence the density of $\left(W_{1}, W_{2}-W_{1}\right)$ is given by

$$
\begin{aligned}
f_{\left(W_{1}, W_{2}-W_{1}\right)}\left(y_{1}, y_{2}\right) & =\alpha^{2} y_{1}\left(y_{1}+y_{2}\right) \mathrm{e}^{-\frac{\alpha}{2}\left(y_{1}+y_{2}\right)^{2}} \mathbf{1}\left(y_{1}>0\right) \mathbf{1}\left(y_{2}>0\right) \\
& =\underbrace{\left(\alpha y_{1} \mathrm{e}^{-\frac{\alpha}{2} y_{1}^{2}} \mathbf{1}\left(y_{1}>0\right)\right)}_{\text {density of } W_{1}} \underbrace{\left(\alpha\left(y_{1}+y_{2}\right) \mathrm{e}^{-\frac{\alpha}{2} y_{2}^{2}-\alpha y_{1} y_{2}} \mathbf{1}\left(y_{2}>0\right)\right)}_{\text {conditional density of } W_{2}-W_{1} \text { given } W_{1}} .
\end{aligned}
$$

In particular W_{1} and $W_{2}-W_{1}$ are not independent (contrary to the homogeneous case).

Solution 4.3

(a) First we will show that \mathbb{P}-a.s. there exists n_{0} such that for all $n \geq n_{0}$ we have

$$
T_{n} \leq \frac{(1+\varepsilon)}{\lambda} \log (n / \lambda)
$$

Set $E_{n}:=\left\{T_{n}>\frac{(1+\varepsilon)}{\lambda} \log (n / \lambda)\right\}$, then

$$
\mathbb{P}\left[E_{n}\right]=\exp \left(-\lambda \frac{(1+\varepsilon)}{\lambda} \log (n / \lambda)\right)=\left(\frac{\lambda}{n}\right)^{1+\varepsilon}
$$

hence $\sum_{n} \mathbb{P}\left[E_{n}\right]<\infty$ and therefore by Borel-Cantelli we obtain $\mathbb{P}\left[\lim _{\sup }^{n \rightarrow \infty}{ } E_{n}\right]=0$. This means that for P-a.a. ω there is $n_{0}(\omega)$ such that for all $n \geq n_{0}(\omega)$ we have

$$
\max _{n_{0}(\omega) \leq k \leq n} T_{k}(\omega) \leq \frac{(1+\varepsilon)}{\lambda} \max _{n_{0}(\omega) \leq k \leq n} \log (k / \lambda)=\frac{(1+\varepsilon)}{\lambda} \log (n / \lambda)
$$

Furthermore we can choose $n_{1}(\omega) \geq n_{0}(\omega)$ such that

$$
\max _{1 \leq k \leq n_{0}(\omega)} T_{k}(\omega) \leq \frac{(1+\varepsilon)}{\lambda} \log \left(n_{1}(\omega) / \lambda\right)
$$

because \log is a monotone function increasing to infinity. Therefore \mathbb{P}-a.s. there is $n_{1} \in \mathbb{N}$, such that for all $n \geq n_{1}$ we have

$$
\max _{1 \leq k \leq n} T_{k}(\omega) \leq \frac{(1+\varepsilon)}{\lambda} \log (n / \lambda)
$$

(b) We have $\lim \sup _{t \rightarrow \infty} \frac{N_{t}+1}{t}=\lim \sup _{t \rightarrow \infty} \frac{N_{t}}{t}$ and

$$
\limsup _{t \rightarrow \infty} \frac{N_{t}}{t} \leq \limsup _{t \rightarrow \infty} \frac{N_{t}}{S_{N_{t}}}=\limsup _{k \rightarrow \infty} \frac{k}{S_{k}}=\lambda
$$

where we used in the last step that by the strong law of large numbers we have $S_{k} / k \rightarrow \frac{1}{\lambda}$ almost surely as $k \rightarrow \infty$. This implies that \mathbb{P}-a.s. there is t_{0} such that for all $t>t_{0}$ we have

$$
\frac{N_{t}+1}{t} \leq(1+\varepsilon) \lambda
$$

(c) \mathbb{P}-a.s. for t large enough we have

$$
L_{t} \leq \max _{1 \leq k \leq N_{t}+1} T_{k} \leq \frac{(1+\varepsilon)}{\lambda} \log \left(\frac{N_{t}+1}{\lambda}\right) \leq \frac{(1+\varepsilon)}{\lambda} \log (t(1+\varepsilon))
$$

which yields $\lim \sup _{t \rightarrow \infty} \frac{L_{t}}{\log t} \leq \frac{(1+\varepsilon)}{\lambda}$. As $\varepsilon>0$ was arbitrarily chosen this yields the claim.

