Coordinator Thomas Cayé

Applied Stochastic Processes

Solution Sheet 5

Solution 5.1

- (a) Let us define the random variables $\widetilde{S}_n = S_n S_0$ for $n \ge 1$ and the process \widetilde{N} by $\widetilde{N}_t := \sum_{k=1}^{\infty} \mathbf{1}\left(\widetilde{S}_k \le t\right)$. We have $\widetilde{N}_t \ge N_t$ for all $t \ge 0$, \mathbb{P} -almost surely. Therefore, by Lemma 2 (ii) of the lecture notes, it holds that $\mathbb{E}[N_t^r] < \infty$ for any $t \in \mathbb{R}^+$ and any $r \in \mathbb{N}$.
- (b) By construction of N, it is nondecreasing, and the monotonicity property of expectaions yields that M is nondecreasing as well.

Let $0 < s < t \in \mathbb{R}^+$, we have $N_{s+\delta} \leq N_t$ for all $0 \leq \delta < t-s$. By the previous question, N_t is integrable. N is right-continuous by construction and we have $\lim_{\delta \downarrow 0} N_{s+\delta} = N_s \mathbb{P}$ -a.s. Using the dominated convergence theorem, we conclude that $\lim_{\delta \downarrow 0} M(s+\delta) = M(s)$. This proves that M is right-continuous.

By the monotone convergence theorem, we have

$$M(t) = \mathbb{E} [N_t]$$

= $\mathbb{E} \left[\sum_{k=1}^{\infty} \mathbf{1} (S_k \leq t) \right]$
= $\mathbb{E} \left[\lim_{n \to \infty} \sum_{k=1}^{n} \mathbf{1} (S_k \leq t) \right]$
= $\lim_{n \to \infty} \mathbb{E} \left[\sum_{k=1}^{n} \mathbf{1} (S_k \leq t) \right]$
= $\lim_{n \to \infty} \sum_{k=1}^{n} \mathbb{E} [\mathbf{1} (S_k \leq t)]$
= $\sum_{k=1}^{\infty} \mathbb{P} [S_k \leq t]$
= $\sum_{k=1}^{\infty} G * F^{*k}(t).$

This proves the claim.

(c) Let s > 0, we have similarly to the proof from the lecture,

$$\hat{M}(s) = \int_0^\infty e^{-sx} dM(x)$$

$$= \int_0^\infty e^{-sx} d\sum_{k=1}^\infty G * F^{*k}(x)$$

$$= \sum_{k=1}^\infty \int_0^\infty e^{-sx} d\left(G * F^{*k}\right)(x)$$

$$= \sum_{k=1}^\infty \mathbb{E}\left[e^{-sS_k}\right]$$

$$= \sum_{k=1}^\infty \mathbb{E}\left[e^{-sS_0}\right] \mathbb{E}\left[e^{-sT_1}\right]^k$$

$$= \sum_{k=1}^\infty \hat{G}(s)\hat{F}(s)^k$$

$$= \hat{G}(s)\frac{\hat{F}(s)}{1 - \hat{F}(s)},$$

where we first used the definition of the Laplace transform, the independence of the T_i 's, that they are identically distributed and the independence of S_0 from the T_i 's. For s = 0 both sides of the equality are infinite.

(d) Let $t \ge 0$. We have from (b) the equality $M(t) = \sum_{k=1}^{\infty} G * F^{*k}(t)$. Rewriting,

$$\begin{split} M(t) &= G * F(t) + \sum_{k=2}^{\infty} G * F^{*k}(t) \\ &= G * F(t) + \sum_{k=2}^{\infty} \int_{0}^{t} G * F^{*k-1}(t-s) dF(s) \\ &= G * F(t) + \sum_{k=1}^{\infty} \int_{0}^{t} G * F^{*k}(t-s) dF(s) \\ &= G * F(t) + \int_{0}^{t} M(t-s) dF(s). \end{split}$$

For t < 0, it holds that M(t) = 0.

Solution 5.2

Observe that the probability distribution of the interarrival times T_n is $\text{Gamma}(\lambda, 2)$, which is the convolution of two $\text{Exp}(\lambda)$ distributions. The interarrival times can thus be written as $T_n = V_{2n-1} + V_{2n}, n \in \mathbb{N}$ where V_n are independent and exponentially distributed random variables with rate λ .

Let $(\tilde{N}_t)_{t\geq 0}$ be the renewal process with interarrival times $V_n, n \in \mathbb{N}$. Hence, for all $n \in \mathbb{N}_0$,

$$P[N_t = n] = P[\tilde{N}_t = 2n] + P[\tilde{N}_t = 2n + 1]$$

= $e^{-\lambda t} \left(\frac{(\lambda t)^{2n}}{(2n)!} + \frac{(\lambda t)^{2n+1}}{(2n+1)!} \right)$

and

$$M(t) = \mathbb{E}[N_t] = \sum_{n=0}^{\infty} nP [N_t = n]$$

= $e^{-\lambda t} \frac{1}{2} \sum_{n=0}^{\infty} \left(2n \frac{(\lambda t)^{2n}}{(2n)!} + (2n+1) \frac{(\lambda t)^{2n+1}}{(2n+1)!} - \frac{(\lambda t)^{2n+1}}{(2n+1)!} \right)$
= $\frac{e^{-\lambda t}}{2} \sum_{n=0}^{\infty} n \frac{(\lambda t)^n}{n!} - \frac{e^{-\lambda t}}{2} \sum_{n=0}^{\infty} \frac{(\lambda t)^{2n+1}}{(2n+1)!}$
= $\frac{\lambda t}{2} - \frac{e^{-\lambda t}}{2} \left(\frac{e^{\lambda t} - e^{-\lambda t}}{2} \right)$
= $\frac{\lambda t}{2} - \frac{1 - e^{-2\lambda t}}{4}.$

From this we obtain $\lim_{t\to\infty} \frac{M(t)}{t} = \frac{\lambda}{2}$.

Solution 5.3

(a) Let
$$S_k = T_1 + \ldots + T_k$$
. For $t \ge 0$,
 $g(t) = P[Y_t = 1]$
 $= P[Y_t = 1, T_1 > t] + P[Y_t = 1, T_1 \le t]$
 $= P[U_1 > t] + E\left[\sum_{k\ge 1} \mathbbm{1}_{\{S_k \le t < S_k + U_{k+1}\}}\right]$
 $= P[U_1 > t] + E\left[\sum_{k\ge 1} \mathbbm{1}_{\{T_1 + S_k - S_1 \le t < T_1 + S_k - S_1 + U_{k+1}\}}\right],$

where T_1 is independent of $S_k - S_1$ and of U_{k+1} , and $S_k - S_1 \stackrel{\mathcal{D}}{=} S_{k-1}$ for $k \ge 1$. By conditioning on T_1 , we obtain

$$E\left[\sum_{k\geq 1} \mathbb{1}_{\{T_1+S_k-S_1\leq t< T_1+S_k-S_1+U_{k+1}\}} \middle| T_1 \right]$$

= $E\left[\sum_{k\geq 1} \mathbb{1}_{\{S_k-S_1\leq t-s< S_k-S_1+U_{k+1}\}} \middle|_{s=T_1} = g(t-T_1) \text{ a.e. on } \{T_1\leq t\}.$

Hence, using the tower property,

$$g(t) = P[U_1 > t] + E[g(t - T_1)\mathbb{1}_{\{T_1 \le t\}}] = P[U_1 > t] + \int_0^t g(t - s) \, \mathrm{d}F(s), \quad t \ge 0.$$

(b) Note that T_1 is the sum of two independent random variables U_1 and V_1 , which have densities $u(t) = \lambda e^{-\lambda t} \mathbb{1}_{\{t \ge 0\}}$ and $v(t) = \mu e^{-\mu t} \mathbb{1}_{\{t \ge 0\}}$, respectively. Hence T_1 also has a density f, which is given by f = u * v. In particular, f is supported on $[0, \infty)$ and for $t \ge 0$ we have

$$f(t) = (u * v)(t) = \int_0^t u(s)v(t-s) \, \mathrm{d}s = \lambda \mu \int_0^t \mathrm{e}^{-\lambda s - \mu(t-s)} \, \mathrm{d}s$$
$$= \lambda \mu \mathrm{e}^{-\mu t} \int_0^t \mathrm{e}^{(\mu-\lambda)s} \, \mathrm{d}s = \frac{\lambda \mu}{\mu - \lambda} \mathrm{e}^{-\mu t} (\mathrm{e}^{(\mu-\lambda)t} - 1)$$
$$= \frac{\lambda \mu}{\mu - \lambda} (\mathrm{e}^{-\lambda t} - \mathrm{e}^{-\mu t}).$$

Next, by a) we know that g satisfies the renewal equation

$$g(t) = \mathbb{P}[U_1 > t] + \int_0^t g(t-s)f(s) \,\mathrm{d}s, \quad t \ge 0.$$

Observing that $\mathbb{P}[U_1>t]=\mathrm{e}^{-\lambda t}\mathbbm{1}_{\{t\geq 0\}}=h(t)$ yields the claim.