Applied Stochastic Processes

Solution Sheet 5

Solution 5.1

(a) Let us define the random variables $\widetilde{S}_{n}=S_{n}-S_{0}$ for $n \geqslant 1$ and the process \tilde{N} by $\tilde{N}_{t}:=\sum_{k=1}^{\infty} \mathbf{1}\left(\widetilde{S}_{k} \leqslant t\right)$. We have $\widetilde{N}_{t} \geqslant N_{t}$ for all $t \geqslant 0, \mathbb{P}$-almost surely. Therefore, by Lemma 2 (ii) of the lecture notes, it holds that $\mathbb{E}\left[N_{t}^{r}\right]<\infty$ for any $t \in \mathbb{R}^{+}$and any $r \in \mathbb{N}$.
(b) By construction of N, it is nondecreasing, and the monotonicity property of expectaions yields that M is nondecreasing as well.
Let $0<s<t \in \mathbb{R}^{+}$, we have $N_{s+\delta} \leqslant N_{t}$ for all $0 \leqslant \delta<t-s$. By the previous question, N_{t} is integrable. N is right-continuous by construction and we have $\lim _{\delta \downarrow 0} N_{s+\delta}=N_{s} \mathbb{P}$-a.s. Using the dominated convergence theorem, we conclude that $\lim _{\delta \downarrow 0} M(s+\delta)=M(s)$. This proves that M is right-continous.
By the monotone convergence theorem, we have

$$
\begin{aligned}
M(t) & =\mathbb{E}\left[N_{t}\right] \\
& =\mathbb{E}\left[\sum_{k=1}^{\infty} \mathbf{1}\left(S_{k} \leqslant t\right)\right] \\
& =\mathbb{E}\left[\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \mathbf{1}\left(S_{k} \leqslant t\right)\right] \\
& =\lim _{n \rightarrow \infty} \mathbb{E}\left[\sum_{k=1}^{n} \mathbf{1}\left(S_{k} \leqslant t\right)\right] \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \mathbb{E}\left[\mathbf{1}\left(S_{k} \leqslant t\right)\right] \\
& =\sum_{k=1}^{\infty} \mathbb{P}\left[S_{k} \leqslant t\right] \\
& =\sum_{k=1}^{\infty} G * F^{* k}(t) .
\end{aligned}
$$

This proves the claim.
(c) Let $s>0$, we have similarly to the proof from the lecture,

$$
\begin{aligned}
\hat{M}(s) & =\int_{0}^{\infty} \mathrm{e}^{-s x} d M(x) \\
& =\int_{0}^{\infty} \mathrm{e}^{-s x} d \sum_{k=1}^{\infty} G * F^{* k}(x) \\
& =\sum_{k=1}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-s x} d\left(G * F^{* k}\right)(x) \\
& =\sum_{k=1}^{\infty} \mathbb{E}\left[\mathrm{e}^{-s S_{k}}\right] \\
& =\sum_{k=1}^{\infty} \mathbb{E}\left[\mathrm{e}^{-s S_{0}}\right] \mathbb{E}\left[\mathrm{e}^{-s T_{1}}\right]^{k} \\
& =\sum_{k=1}^{\infty} \hat{G}(s) \hat{F}(s)^{k} \\
& =\hat{G}(s) \frac{\hat{F}(s)}{1-\hat{F}(s)},
\end{aligned}
$$

where we first used the definition of the Laplace transform, the independence of the T_{i} 's, that they are identically distributed and the independence of S_{0} from the T_{i} 's. For $s=0$ both sides of the equality are infinite.
(d) Let $t \geqslant 0$. We have from (b) the equality $M(t)=\sum_{k=1}^{\infty} G * F^{* k}(t)$. Rewriting,

$$
\begin{aligned}
M(t) & =G * F(t)+\sum_{k=2}^{\infty} G * F^{* k}(t) \\
& =G * F(t)+\sum_{k=2}^{\infty} \int_{0}^{t} G * F^{* k-1}(t-s) d F(s) \\
& =G * F(t)+\sum_{k=1}^{\infty} \int_{0}^{t} G * F^{* k}(t-s) d F(s) \\
& =G * F(t)+\int_{0}^{t} M(t-s) d F(s) .
\end{aligned}
$$

For $t<0$, it holds that $M(t)=0$.

Solution 5.2

Observe that the probability distribution of the interarrival times T_{n} is $\operatorname{Gamma}(\lambda, 2)$, which is the convolution of two $\operatorname{Exp}(\lambda)$ distributions. The interarrival times can thus be written as $T_{n}=V_{2 n-1}+V_{2 n}, n \in \mathbb{N}$ where V_{n} are independent and exponentially distributed random variables with rate λ.

Let $\left(\tilde{N}_{t}\right)_{t \geq 0}$ be the renewal process with interarrival times $V_{n}, n \in \mathbb{N}$. Hence, for all $n \in \mathbb{N}_{0}$,

$$
\begin{aligned}
P\left[N_{t}=n\right] & =P\left[\tilde{N}_{t}=2 n\right]+P\left[\tilde{N}_{t}=2 n+1\right] \\
& =\mathrm{e}^{-\lambda t}\left(\frac{(\lambda t)^{2 n}}{(2 n)!}+\frac{(\lambda t)^{2 n+1}}{(2 n+1)!}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
M(t) & =\mathbb{E}\left[N_{t}\right]=\sum_{n=0}^{\infty} n P\left[N_{t}=n\right] \\
& =\mathrm{e}^{-\lambda t} \frac{1}{2} \sum_{n=0}^{\infty}\left(2 n \frac{(\lambda t)^{2 n}}{(2 n)!}+(2 n+1) \frac{(\lambda t)^{2 n+1}}{(2 n+1)!}-\frac{(\lambda t)^{2 n+1}}{(2 n+1)!}\right) \\
& =\frac{\mathrm{e}^{-\lambda t}}{2} \sum_{n=0}^{\infty} n \frac{(\lambda t)^{n}}{n!}-\frac{\mathrm{e}^{-\lambda t}}{2} \sum_{n=0}^{\infty} \frac{(\lambda t)^{2 n+1}}{(2 n+1)!} \\
& =\frac{\lambda t}{2}-\frac{\mathrm{e}^{-\lambda t}}{2}\left(\frac{\mathrm{e}^{\lambda t}-\mathrm{e}^{-\lambda t}}{2}\right) \\
& =\frac{\lambda t}{2}-\frac{1-\mathrm{e}^{-2 \lambda t}}{4}
\end{aligned}
$$

From this we obtain $\lim _{t \rightarrow \infty} \frac{M(t)}{t}=\frac{\lambda}{2}$.

Solution 5.3

(a) Let $S_{k}=T_{1}+\ldots+T_{k}$. For $t \geq 0$,

$$
\begin{aligned}
g(t) & =P\left[Y_{t}=1\right] \\
& =P\left[Y_{t}=1, T_{1}>t\right]+P\left[Y_{t}=1, T_{1} \leq t\right] \\
& =P\left[U_{1}>t\right]+E\left[\sum_{k \geq 1} \mathbb{1}_{\left\{S_{k} \leq t<S_{k}+U_{k+1}\right\}}\right] \\
& =P\left[U_{1}>t\right]+E\left[\sum_{k \geq 1} \mathbb{1}_{\left\{T_{1}+S_{k}-S_{1} \leq t<T_{1}+S_{k}-S_{1}+U_{k+1}\right\}}\right]
\end{aligned}
$$

where T_{1} is independent of $S_{k}-S_{1}$ and of U_{k+1}, and $S_{k}-S_{1} \stackrel{\mathcal{D}}{=} S_{k-1}$ for $k \geq 1$.
By conditioning on T_{1}, we obtain

$$
\begin{aligned}
& E\left[\sum_{k \geq 1} \mathbb{1}_{\left\{T_{1}+S_{k}-S_{1} \leq t<T_{1}+S_{k}-S_{1}+U_{k+1}\right\}} \mid T_{1}\right] \\
= & \left.E\left[\sum_{k \geq 1} \mathbb{1}_{\left\{S_{k}-S_{1} \leq t-s<S_{k}-S_{1}+U_{k+1}\right\}}\right]\right|_{s=T_{1}}=g\left(t-T_{1}\right) \quad \text { a.e. on }\left\{T_{1} \leq t\right\} .
\end{aligned}
$$

Hence, using the tower property,

$$
g(t)=P\left[U_{1}>t\right]+E\left[g\left(t-T_{1}\right) \mathbb{1}_{\left\{T_{1} \leq t\right\}}\right]=P\left[U_{1}>t\right]+\int_{0}^{t} g(t-s) \mathrm{d} F(s), \quad t \geq 0
$$

(b) Note that T_{1} is the sum of two independent random variables U_{1} and V_{1}, which have densities $u(t)=\lambda \mathrm{e}^{-\lambda t} \mathbb{1}_{\{t \geq 0\}}$ and $v(t)=\mu \mathrm{e}^{-\mu t} \mathbb{1}_{\{t \geq 0\}}$, respectively. Hence T_{1} also has a density f, which is given by $f=u * v$. In particular, f is supported on $[0, \infty)$ and for $t \geq 0$ we have

$$
\begin{aligned}
f(t) & =(u * v)(t)=\int_{0}^{t} u(s) v(t-s) \mathrm{d} s=\lambda \mu \int_{0}^{t} \mathrm{e}^{-\lambda s-\mu(t-s)} \mathrm{d} s \\
& =\lambda \mu \mathrm{e}^{-\mu t} \int_{0}^{t} \mathrm{e}^{(\mu-\lambda) s} \mathrm{~d} s=\frac{\lambda \mu}{\mu-\lambda} \mathrm{e}^{-\mu t}\left(\mathrm{e}^{(\mu-\lambda) t}-1\right) \\
& =\frac{\lambda \mu}{\mu-\lambda}\left(\mathrm{e}^{-\lambda t}-\mathrm{e}^{-\mu t}\right)
\end{aligned}
$$

Next, by a) we know that g satisfies the renewal equation

$$
g(t)=\mathbb{P}\left[U_{1}>t\right]+\int_{0}^{t} g(t-s) f(s) \mathrm{d} s, \quad t \geq 0
$$

Observing that $\mathbb{P}\left[U_{1}>t\right]=\mathrm{e}^{-\lambda t} \mathbb{1}_{\{t \geq 0\}}=h(t)$ yields the claim.

