Applied Stochastic Processes

Solution Sheet 6

Solution 6.1

For $k \in \mathbb{N}$ let U_{k} denote the distance between the $(k+1)$ st and the k th vehicle queueing at the gate. Then for all $x \geq 0$,

$$
N_{x}=1+\sum_{k=1}^{\infty} \mathbb{1}_{\left\{\sum_{j=1}^{k} L_{j}+U_{j} \leq x\right\}}
$$

Hence, $\left(N_{x}-1\right)_{x \geq 0}$ is a renewal process with interarrival times $T_{k}=L_{k}+U_{k}$. Note that $E\left[T_{k}\right]=E\left[L_{k}\right]+\frac{1}{2}$ and that by assumption $E\left[L_{k}\right]<\infty$. The strong law of large numbers for renewal processes implies

$$
\lim _{x \rightarrow \infty} \frac{N_{x}}{x}=\frac{1}{\frac{1}{2}+\mathrm{E}\left[L_{k}\right]} \quad \text { a.s. }
$$

Solution 6.2

Lemma 2 (iii) form class yields $\hat{M}(x)=\frac{\hat{F}(x)}{1-\hat{F}(x)}$ for every $t \geq 0$. Using

$$
\hat{M}(x)=\int_{0}^{\infty} \mathrm{e}^{-x u} \mathrm{~d} M(u)=c \int_{0}^{\infty} \mathrm{e}^{-x u} \mathrm{~d} u=\frac{c}{x}
$$

we derive

$$
\hat{F}(x)=\frac{\hat{M}(x)}{1+\hat{M}(x)}=\frac{1}{x / c+1}
$$

On the other hand, the Laplace transform of an $\operatorname{Exp}(c)$ random variable is given by $\int_{0}^{\infty} \mathrm{e}^{-x u} c \mathrm{e}^{-c u} \mathrm{~d} u=\frac{1}{x / c+1}$. Because the Laplace transform determines the distribution, the interarrival times are $\operatorname{Exp}(c)$ distributed. We have a counting process starting at 0 , with jump of size $1 \mathbb{P}$-a.s. The interarrival time are \mathbb{P}-a.s. finite, independent and exponentially distributed with same parameter. By the Poisson process characterisation theorem, the renewal process is a Poisson process with rate c.

Solution 6.3

a) Let $B_{1}, \ldots, B_{k} \in \mathcal{B}(\mathbb{R})$ and $A \in \mathcal{F}_{\tau}$. Then we have by independence of $\left(T_{n+k}\right)_{k \in \mathbb{N}}$ and \mathcal{F}_{n}
for all $n \in \mathbb{N}$, the fact that the T_{k} are i.i.d. and the law of total probability

$$
\begin{align*}
\mathbb{P}\left[\widetilde{S}_{1} \in B_{1}, \ldots, \widetilde{S}_{k} \in B_{k}, A\right] & =\mathbb{P}\left[T_{\tau+1} \in B_{1}, \ldots, \sum_{j=1}^{k} T_{\tau+j} \in B_{k}, A\right] \\
& =\sum_{n=0}^{\infty} \mathbb{P}\left[T_{\tau+1} \in B_{1}, \ldots, \sum_{j=1}^{k} T_{\tau+j} \in B_{k}, A \cap\{\tau=n\}\right] \\
& =\sum_{n=0}^{\infty} \mathbb{P}\left[T_{n+1} \in B_{1}, \ldots, \sum_{j=1}^{k} T_{n+j} \in B_{k}, A \cap\{\tau=n\}\right] \\
& =\sum_{n=0}^{\infty} \mathbb{P}\left[T_{n+1} \in B_{1}, \ldots, \sum_{j=1}^{k} T_{n+j} \in B_{k}\right] \times \mathbb{P}[A \cap\{\tau=n\}] \\
& =\sum_{n=0}^{\infty} \mathbb{P}\left[T_{1} \in B_{1}, \ldots, \sum_{j=1}^{k} T_{j} \in B_{k}\right] \times \mathbb{P}[A \cap\{\tau=n\}] \\
& =\mathbb{P}\left[T_{1} \in B_{1}, \ldots, \sum_{j=1}^{k} T_{j} \in B_{k}\right] \times \mathbb{P}[A] \\
& =\mathbb{P}\left[S_{1} \in B_{1}, \ldots, S_{k} \in B_{k}\right] \times \mathbb{P}[A] . \tag{1}
\end{align*}
$$

For $A=\Omega$ this yields that $\left(\widetilde{S}_{k}\right)_{k \in \mathbb{N}}$ is equal in distribution to $\left(\widetilde{S}_{k}\right)_{k \in \mathbb{N}}$. Using this, we get for $A \in \mathcal{F}_{\tau}$ again arbitrary

$$
\begin{align*}
\mathbb{P}\left[\widetilde{S}_{1} \in B_{1}, \ldots, \widetilde{S}_{k} \in B_{k}, A\right] & =\mathbb{P}\left[S_{1} \in B_{1}, \ldots, S_{k} \in B_{k}\right] \times \mathbb{P}[A] \\
& =\mathbb{P}\left[\widetilde{S}_{1} \in B_{1}, \ldots, \widetilde{S}_{k} \in B_{k}\right] \times \mathbb{P}[A] \tag{2}
\end{align*}
$$

which shows that $\left(\widetilde{S}_{k}\right)_{k \in \mathbb{N}}$ and \mathcal{F}_{τ} are independent.
b) Since $T_{1}>0 \mathbb{P}$-a.s., it follows that on a set of full probability, N is a counting process starting at 0 and increasing by jumps of size 1 . In particular, we have

$$
\begin{equation*}
S_{k}=\inf \left\{t \geq 0 \mid N_{t}=k\right\} \mathbb{P} \text {-a.s., } \quad k \in \mathbb{N} \tag{3}
\end{equation*}
$$

and $N_{S_{k}}=k$ P-a.s..
Using these properties, it follows immediately that on a set of full probability, $N^{(\tau)}$ is a counting process starting at 0 and increasing by jumps of size 1 , too. Denote by $\left(S_{k}^{(\tau)}\right)_{k \in \mathbb{N}}$ the sequence of successive jump times of $N^{(\tau)}$. Using the notation from part a), it follows immediately from the definition of $N^{(\tau)}$ and the above that $S_{k}^{(\tau)}=\sum_{j=1}^{k} T_{\tau+k}=\widetilde{S}_{k} \mathbb{P}$-a.s. for all $k \in \mathbb{N}$. Set $S_{0}^{(\tau)}:=0$ and $T_{k}^{(\tau)}:=S_{k}^{(\tau)}-S_{k-1}^{(\tau)}, k \in \mathbb{N}$. Then it follows from part a) that $\left(T_{k}^{(\tau)}\right)_{k \in \mathbb{N}}$ is equal in distribution to $\left(T_{k}\right)_{k \in \mathbb{N}}$ and independent from \mathcal{F}_{τ}. Since a renewal process is characterised by its interarrival times, $\widetilde{N}^{(\tau)}$ is independent from \mathcal{F}_{τ}.

Solution 6.4

a) Set $e_{y}(t):=\mathbb{P}\left[E_{t} \leq y\right]$. Then we have $e_{y}(t)=1-Z_{(0, y)}(t)$. Moreover, it follows from the lecture that e_{y} satisfies the renewal equation

$$
\begin{equation*}
e_{y}(t)=F(t+y)-F(t)+\int_{0}^{t} e_{y}(t-s) \mathrm{d} F(s), \quad t \geq 0 \tag{4}
\end{equation*}
$$

Using this, we get

$$
\begin{align*}
Z_{(0, y)}(t) & =1-e_{y}(t)=1+F(t)-F(t+y)+\int_{0}^{t}\left(1-e_{y}(t-s)\right) \mathrm{d} F(s)-F(t) \\
& =1-F(t+y)+\int_{0}^{t} Z_{(0, y)}(t-s) \mathrm{d} F(s), \quad t \geq 0 \tag{5}
\end{align*}
$$

b) We have for $x, y \geq 0$ and $t \geq x$

$$
\begin{align*}
\left\{A_{t} \geq x, E_{t}>y\right\} & =\left\{S_{N_{t}} \leq t-x, S_{N_{t}+1}>t+y\right\} \\
& =\left\{N_{t}=N_{t-x}, S_{N_{t}+1}>t+y\right\} \\
& =\left\{N_{t}=N_{t-x}, S_{N_{t-x}+1}>t+y\right\} \\
& =\left\{S_{N_{t-x}+1}>(t-x)+x+y\right\} \\
& =\left\{E_{t-x}>x+y\right\} . \tag{6}
\end{align*}
$$

This together with the definition of $Z_{(x, y)}$ implies the claim.
c) For $x \geq 0$ define $h_{x}(t):=(1-F(t+x)) \mathbb{1}_{\{t \geq 0\}}$. Then $h \geq 0$ is decreasing and satisfies

$$
\begin{align*}
\int_{0}^{\infty} h_{x}(t) \mathrm{d} t & =\int_{0}^{\infty}(1-F(t+x)) \mathrm{d} t \leq \int_{0}^{\infty}(1-F(t)) \mathrm{d} t \\
& =\int_{0}^{\infty} \mathbb{P}\left[S_{1}>t\right] \mathrm{d} t=\mathbb{E}\left[S_{1}\right]=\mu<\infty \tag{7}
\end{align*}
$$

Hence h_{x} is directly Riemann integrable as shown in the lecture.
Putting the results of part a) and b) together with Smith's key renewal theorem, we get

$$
\begin{align*}
\lim _{t \rightarrow \infty} Z_{(x, y)}(t) & =\lim _{t \rightarrow \infty} Z_{(0, x+y)}(t-x)=\lim _{t \rightarrow \infty} Z_{(0, x+y)}(t) \\
& =\frac{1}{\mu} \int_{0}^{\infty} h_{x+y}(u) \mathrm{d} u=\frac{1}{\mu} \int_{x+y}^{\infty}(1-F(u)) \mathrm{d} u \tag{8}
\end{align*}
$$

For $x, y \geq 0$ set $G_{\infty}(x, y):=\frac{1}{\mu} \int_{x+y}^{\infty}(1-F(u)) \mathrm{d} u$. Note that

$$
\begin{equation*}
G_{\infty}(0,0)=\frac{1}{\mu} \int_{0}^{\infty}(1-F(u)) \mathrm{d} u=\frac{\mu}{\mu}=1 \tag{9}
\end{equation*}
$$

Moreover, for $x, y \in \mathbb{R}$ define the function \bar{G}_{∞} by

$$
\bar{G}_{\infty}(x, y):= \begin{cases}G_{\infty}(-x,-y) & \text { if } x, y \leq 0 \tag{10}\\ G_{\infty}(-x, 0) & \text { if } x \leq 0, y>0 \\ G_{\infty}(0,-y) & \text { if } x>0, y \leq 0 \\ 1 & \text { if } x, y>0\end{cases}
$$

It follows directly from the definition of G that \bar{G}_{∞} is $[0,1]$-valued and continuous (and a fortiori right-continuous). In addition, it is not difficult to check that for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in$ \mathbb{R}^{2} with $x_{1}<x_{2}$ and $y_{1}<y_{2}$ we have

$$
\begin{equation*}
\bar{G}_{\infty}\left(x_{2}, y_{2}\right)-\bar{G}_{\infty}\left(x_{1}, y_{2}\right)-\bar{G}_{\infty}\left(x_{2}, y_{1}\right)+\bar{G}_{\infty}\left(x_{1}, y_{1}\right) \geq 0 . \tag{11}
\end{equation*}
$$

Moreover, we have $\bar{G}_{\infty}(0,0)=1$ and $\lim _{(x, y) \rightarrow(-\infty,-\infty)} \bar{G}_{\infty}(x, y)=0$.
In conclusion, \bar{G}_{∞} is the distribution function of a two dimensional random vector supported on $(-\infty, 0]^{2}$. Put differently, there exists a random vector $\left(A_{\infty}, E_{\infty}\right)$ valued in $[0, \infty)^{2}$ such that \bar{G}_{∞} is the distribution function of $\left(-A_{\infty},-E_{\infty}\right)$ and we have

$$
\begin{equation*}
G_{\infty}(x, y)=\mathbb{P}\left[A_{\infty} \geq x, E_{\infty} \geq y\right], \quad x, y \geq 0 \tag{12}
\end{equation*}
$$

For $t \geq 0$, denote by \bar{G}_{t} the distribution function of $\left(-A_{t},-E_{t}\right)$ and define the function G_{t} on $[0, \infty)^{2}$ by $G_{t}(x, y):=\mathbb{P}\left[A_{t} \geq x, E_{t} \geq y\right]$. Note that G_{t} and \bar{G}_{t} have the same relationship as G_{∞} and \bar{G}_{∞}.

We proceed to show that $\left(A_{t}, E_{t}\right)$ converges in distribution to $\left(A_{\infty}, E_{\infty}\right)$ as $t \rightarrow \infty$. This is clearly equivalent to showing that $\left(-A_{t},-E_{t}\right)$ converges in distribution to $\left(A_{\infty}, E_{\infty}\right)$ as $t \rightarrow \infty$, which in turn by continuity of G_{∞} is equivalent to showing that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \bar{G}_{t}(x, y)=\bar{G}_{\infty}(x, y) \quad \text { for all }(x, y) \in \mathbb{R}^{2} \tag{13}
\end{equation*}
$$

Using the relationship between G_{t} and \bar{G}_{t} and G_{∞} and \bar{G}_{∞}, respectively, the latter is equivalent to establishing that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} G_{t}(x, y)=G_{\infty}(x, y) \quad \text { for all } x, y \geq 0 \tag{14}
\end{equation*}
$$

Observe that $Z_{x, y}(t)=G_{t}(x, y+)$ for all $t, x, y \geq 0$, where $G_{t}(x, y+)=\lim _{u \downarrow y} G_{t}(x, u)$. By (8) it follows that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} G_{t}(x, y+)=G_{\infty}(x, y) \quad \text { for all } x, y \geq 0 \tag{15}
\end{equation*}
$$

Using continuity of G, monotonicity of $G_{t}(x, y+)$ in y and $\lim _{u \uparrow y} G_{t}(x, u+)=G_{t}(x, y)$, it is an easy exercise in analysis to derive (14).
d) A_{∞} and E_{∞} are independent if and only if for all $x, y \geq 0$ we have

$$
\begin{equation*}
\mathbb{P}\left[A_{\infty} \geq x, E_{\infty} \geq y\right]=\mathbb{P}\left[A_{\infty} \geq x\right] \mathbb{P}\left[E_{\infty} \geq y\right] \tag{16}
\end{equation*}
$$

Define the function g by $g(z)=\frac{1}{\mu} \int_{z}^{\infty}(1-F(u)) \mathrm{d} u, z \geq 0$. By part c) it follows that for all $x, y \geq 0$ we have

$$
\begin{equation*}
\mathbb{P}\left[A_{\infty} \geq x, E_{\infty} \geq y\right]=G(x, y)=g(x+y) \tag{17}
\end{equation*}
$$

In particular A_{∞} and E_{∞} are independent if and only if for all $x, y \geq 0$ we have

$$
\begin{equation*}
g(x+y)=g(x) g(y) \tag{18}
\end{equation*}
$$

As g is continuous, this functional equation has the unique solution $g(z)=e^{\alpha z}$, where $\alpha<0$, since $\lim _{z \rightarrow \infty} g(z)=0$. Moreover, we know that

$$
\begin{equation*}
e^{a z}=g(z)=\frac{1}{\mu} \int_{z}^{\infty}(1-F(s)) \mathrm{d} s, \quad z \geq 0 \tag{19}
\end{equation*}
$$

Differentiating both sides yields

$$
\begin{equation*}
a e^{a z}=-\frac{1}{\mu}(1-F(z)), \quad z \geq 0 \tag{20}
\end{equation*}
$$

Hence, we have $F(z)=1+\mu \alpha e^{\alpha z}$. Plugging in $z=0$ shows that $\alpha \geq-1 / \mu$. Hence there exists $\lambda \in(0,1 / \mu]$ such that

$$
\begin{equation*}
F(t)=\left(1-\lambda \mu e^{-\lambda t}\right) \mathbb{1}_{\{t \geq 0\}}=(1-\lambda \mu) \times \mathbb{1}_{\{t \geq 0\}}+\lambda \mu\left(1-e^{-\lambda t}\right) \mathbb{1}_{\{t \geq 0\}}, \quad t \geq 0 \tag{21}
\end{equation*}
$$

In conclusion, A_{∞} and E_{∞} are independent if and only if F is the mixture of a Diracdistribution at 0 and an exponential distribution with parameter $\lambda \in(0,1 / \mu]$ with weights $(1-\lambda \mu)$ and $\lambda \mu$, respectively.
Remark: For $\lambda=1 / \mu, N$ is a Poisson process with parameter $1 / \mu$.

