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Solution 6.1

For k ∈ N let Uk denote the distance between the (k + 1)st and the kth vehicle queueing at the
gate. Then for all x ≥ 0,

Nx = 1 +
∞∑
k=1

1{∑k
j=1 Lj+Uj≤x}.

Hence, (Nx − 1)x≥0 is a renewal process with interarrival times Tk = Lk + Uk. Note that
E[Tk] = E[Lk] + 1

2 and that by assumption E[Lk] < ∞. The strong law of large numbers for
renewal processes implies

lim
x→∞

Nx

x
=

1
1
2 + E[Lk]

a.s.

Solution 6.2

Lemma 2 (iii) form class yields M̂(x) = F̂ (x)

1−F̂ (x)
for every t ≥ 0. Using

M̂(x) =

∫ ∞
0

e−xu dM(u) = c

∫ ∞
0

e−xu du =
c

x
,

we derive

F̂ (x) =
M̂(x)

1 + M̂(x)
=

1

x/c+ 1
.

On the other hand, the Laplace transform of an Exp(c) random variable is given by∫∞
0 e−xuce−cu du = 1

x/c+1 . Because the Laplace transform determines the distribution, the in-
terarrival times are Exp(c) distributed. We have a counting process starting at 0, with jump of
size 1 P-a.s. The interarrival time are P-a.s. finite, independent and exponentially distributed
with same parameter. By the Poisson process characterisation theorem, the renewal process is a
Poisson process with rate c.

Solution 6.3

a) Let B1, . . . , Bk ∈ B(R) and A ∈ Fτ . Then we have by independence of (Tn+k)k∈N and Fn



for all n ∈ N, the fact that the Tk are i.i.d. and the law of total probability

P[S̃1 ∈ B1, . . . , S̃k ∈ Bk, A] = P[Tτ+1 ∈ B1, . . . ,

k∑
j=1

Tτ+j ∈ Bk, A]

=

∞∑
n=0

P[Tτ+1 ∈ B1, . . . ,

k∑
j=1

Tτ+j ∈ Bk, A ∩ {τ = n}]

=

∞∑
n=0

P[Tn+1 ∈ B1, . . . ,

k∑
j=1

Tn+j ∈ Bk, A ∩ {τ = n}]

=

∞∑
n=0

P[Tn+1 ∈ B1, . . . ,

k∑
j=1

Tn+j ∈ Bk]× P[A ∩ {τ = n}]

=

∞∑
n=0

P[T1 ∈ B1, . . . ,

k∑
j=1

Tj ∈ Bk]× P[A ∩ {τ = n}]

= P[T1 ∈ B1, . . . ,

k∑
j=1

Tj ∈ Bk]× P[A]

= P[S1 ∈ B1, . . . , Sk ∈ Bk]× P[A]. (1)

For A = Ω this yields that (S̃k)k∈N is equal in distribution to (S̃k)k∈N. Using this, we get
for A ∈ Fτ again arbitrary

P[S̃1 ∈ B1, . . . , S̃k ∈ Bk, A] = P[S1 ∈ B1, . . . , Sk ∈ Bk]× P[A]

= P[S̃1 ∈ B1, . . . , S̃k ∈ Bk]× P[A], (2)

which shows that (S̃k)k∈N and Fτ are independent.

b) Since T1 > 0 P-a.s., it follows that on a set of full probability, N is a counting process
starting at 0 and increasing by jumps of size 1. In particular, we have

Sk = inf{t ≥ 0 | Nt = k} P-a.s., k ∈ N, (3)

and NSk
= k P-a.s..

Using these properties, it follows immediately that on a set of full probability, N (τ) is a
counting process starting at 0 and increasing by jumps of size 1, too. Denote by (S

(τ)
k )k∈N

the sequence of successive jump times of N (τ). Using the notation from part a), it follows
immediately from the definition of N (τ) and the above that S(τ)

k =
∑k

j=1 Tτ+k = S̃k P-a.s.
for all k ∈ N. Set S(τ)

0 := 0 and T
(τ)
k := S

(τ)
k − S(τ)

k−1, k ∈ N. Then it follows from part
a) that (T

(τ)
k )k∈N is equal in distribution to (Tk)k∈N and independent from Fτ . Since a

renewal process is characterised by its interarrival times, Ñ (τ) is independent from Fτ .

Solution 6.4

a) Set ey(t) := P[Et ≤ y]. Then we have ey(t) = 1 − Z(0,y)(t). Moreover, it follows from the
lecture that ey satisfies the renewal equation

ey(t) = F (t+ y)− F (t) +

∫ t

0
ey(t− s) dF (s), t ≥ 0. (4)



Using this, we get

Z(0,y)(t) = 1− ey(t) = 1 + F (t)− F (t+ y) +

∫ t

0
(1− ey(t− s)) dF (s)− F (t)

= 1− F (t+ y) +

∫ t

0
Z(0,y)(t− s) dF (s), t ≥ 0. (5)

b) We have for x, y ≥ 0 and t ≥ x

{At ≥ x,Et > y} = {SNt ≤ t− x, SNt+1 > t+ y}
= {Nt = Nt−x, SNt+1 > t+ y}
= {Nt = Nt−x, SNt−x+1 > t+ y}
= {SNt−x+1 > (t− x) + x+ y}
= {Et−x > x+ y}. (6)

This together with the definition of Z(x,y) implies the claim.

c) For x ≥ 0 define hx(t) := (1− F (t+ x))1{t≥0}. Then h ≥ 0 is decreasing and satisfies∫ ∞
0

hx(t) dt =

∫ ∞
0

(1− F (t+ x)) dt ≤
∫ ∞
0

(1− F (t)) dt

=

∫ ∞
0

P[S1 > t] dt = E[S1] = µ <∞. (7)

Hence hx is directly Riemann integrable as shown in the lecture.
Putting the results of part a) and b) together with Smith’s key renewal theorem, we get

lim
t→∞

Z(x,y)(t) = lim
t→∞

Z(0,x+y)(t− x) = lim
t→∞

Z(0,x+y)(t)

=
1

µ

∫ ∞
0

hx+y(u) du =
1

µ

∫ ∞
x+y

(1− F (u)) du. (8)

For x, y ≥ 0 set G∞(x, y) := 1
µ

∫∞
x+y(1− F (u)) du. Note that

G∞(0, 0) =
1

µ

∫ ∞
0

(1− F (u)) du =
µ

µ
= 1. (9)

Moreover, for x, y ∈ R define the function G∞ by

G∞(x, y) :=


G∞(−x,−y) if x, y ≤ 0,

G∞(−x, 0) if x ≤ 0, y > 0,

G∞(0,−y) if x > 0, y ≤ 0,

1 if x, y > 0.

(10)

It follows directly from the definition of G that G∞ is [0, 1]-valued and continuous (and a
fortiori right-continuous). In addition, it is not difficult to check that for (x1, y1), (x2, y2) ∈
R2 with x1 < x2 and y1 < y2 we have

G∞(x2, y2)−G∞(x1, y2)−G∞(x2, y1) +G∞(x1, y1) ≥ 0. (11)

Moreover, we have G∞(0, 0) = 1 and lim(x,y)→(−∞,−∞)G∞(x, y) = 0.

In conclusion, G∞ is the distribution function of a two dimensional random vector sup-
ported on (−∞, 0]2. Put differently, there exists a random vector (A∞, E∞) valued in
[0,∞)2 such that G∞ is the distribution function of (−A∞,−E∞) and we have

G∞(x, y) = P[A∞ ≥ x,E∞ ≥ y], x, y ≥ 0. (12)



For t ≥ 0, denote by Gt the distribution function of (−At,−Et) and define the function
Gt on [0,∞)2 by Gt(x, y) := P[At ≥ x,Et ≥ y]. Note that Gt and Gt have the same
relationship as G∞ and G∞.
We proceed to show that (At, Et) converges in distribution to (A∞, E∞) as t → ∞. This
is clearly equivalent to showing that (−At,−Et) converges in distribution to (A∞, E∞) as
t→∞, which in turn by continuity of G∞ is equivalent to showing that

lim
t→∞

Gt(x, y) = G∞(x, y) for all (x, y) ∈ R2. (13)

Using the relationship between Gt and Gt and G∞ and G∞, respectively, the latter is
equivalent to establishing that

lim
t→∞

Gt(x, y) = G∞(x, y) for all x, y ≥ 0. (14)

Observe that Zx,y(t) = Gt(x, y+) for all t, x, y ≥ 0, where Gt(x, y+) = limu↓y Gt(x, u). By
(8) it follows that

lim
t→∞

Gt(x, y+) = G∞(x, y) for all x, y ≥ 0. (15)

Using continuity of G, monotonicity of Gt(x, y+) in y and limu↑y Gt(x, u+) = Gt(x, y), it
is an easy exercise in analysis to derive (14).

d) A∞ and E∞ are independent if and only if for all x, y ≥ 0 we have

P[A∞ ≥ x,E∞ ≥ y] = P[A∞ ≥ x]P[E∞ ≥ y]. (16)

Define the function g by g(z) = 1
µ

∫∞
z (1 − F (u)) du, z ≥ 0. By part c) it follows that for

all x, y ≥ 0 we have

P[A∞ ≥ x,E∞ ≥ y] = G(x, y) = g(x+ y). (17)

In particular A∞ and E∞ are independent if and only if for all x, y ≥ 0 we have

g(x+ y) = g(x)g(y). (18)

As g is continuous, this functional equation has the unique solution g(z) = eαz, where
α < 0, since limz→∞ g(z) = 0. Moreover, we know that

eaz = g(z) =
1

µ

∫ ∞
z

(1− F (s)) ds, z ≥ 0 (19)

Differentiating both sides yields

aeaz = − 1

µ
(1− F (z)), z ≥ 0. (20)

Hence, we have F (z) = 1 + µαeαz. Plugging in z = 0 shows that α ≥ −1/µ. Hence there
exists λ ∈ (0, 1/µ] such that

F (t) = (1− λµe−λt)1{t≥0} = (1− λµ)× 1{t≥0} + λµ(1− e−λt)1{t≥0}, t ≥ 0. (21)

In conclusion, A∞ and E∞ are independent if and only if F is the mixture of a Dirac-
distribution at 0 and an exponential distribution with parameter λ ∈ (0, 1/µ] with weights
(1− λµ) and λµ, respectively.
Remark : For λ = 1/µ, N is a Poisson process with parameter 1/µ.


