Coordinator Thomas Cayé

Applied Stochastic Processes

Solution Sheet 6

Solution 6.1

For $k \in \mathbb{N}$ let U_k denote the distance between the (k+1)st and the kth vehicle queueing at the gate. Then for all $x \ge 0$,

$$N_x = 1 + \sum_{k=1}^{\infty} \mathbb{1}_{\{\sum_{j=1}^k L_j + U_j \le x\}}.$$

Hence, $(N_x - 1)_{x \ge 0}$ is a renewal process with interarrival times $T_k = L_k + U_k$. Note that $E[T_k] = E[L_k] + \frac{1}{2}$ and that by assumption $E[L_k] < \infty$. The strong law of large numbers for renewal processes implies

$$\lim_{x \to \infty} \frac{N_x}{x} = \frac{1}{\frac{1}{2} + \mathcal{E}[L_k]} \quad \text{a.s.}$$

Solution 6.2

Lemma 2 (iii) form class yields $\hat{M}(x) = \frac{\hat{F}(x)}{1-\hat{F}(x)}$ for every $t \ge 0$. Using

$$\hat{M}(x) = \int_0^\infty \mathrm{e}^{-xu} \,\mathrm{d}M(u) = c \int_0^\infty \mathrm{e}^{-xu} \,\mathrm{d}u = \frac{c}{x},$$

we derive

$$\hat{F}(x) = \frac{\hat{M}(x)}{1 + \hat{M}(x)} = \frac{1}{x/c+1}.$$

On the other hand, the Laplace transform of an $\operatorname{Exp}(c)$ random variable is given by $\int_0^\infty e^{-xu} c e^{-cu} du = \frac{1}{x/c+1}$. Because the Laplace transform determines the distribution, the interarrival times are $\operatorname{Exp}(c)$ distributed. We have a counting process starting at 0, with jump of size 1 \mathbb{P} -a.s. The interarrival time are \mathbb{P} -a.s. finite, independent and exponentially distributed with same parameter. By the Poisson process characterisation theorem, the renewal process is a Poisson process with rate c.

Solution 6.3

a) Let $B_1, \ldots, B_k \in \mathcal{B}(\mathbb{R})$ and $A \in \mathcal{F}_{\tau}$. Then we have by independence of $(T_{n+k})_{k \in \mathbb{N}}$ and \mathcal{F}_n

for all $n \in \mathbb{N}$, the fact that the T_k are i.i.d. and the law of total probability

$$\mathbb{P}[\widetilde{S}_{1} \in B_{1}, \dots, \widetilde{S}_{k} \in B_{k}, A] = \mathbb{P}[T_{\tau+1} \in B_{1}, \dots, \sum_{j=1}^{k} T_{\tau+j} \in B_{k}, A]$$

$$= \sum_{n=0}^{\infty} \mathbb{P}[T_{\tau+1} \in B_{1}, \dots, \sum_{j=1}^{k} T_{\tau+j} \in B_{k}, A \cap \{\tau = n\}]$$

$$= \sum_{n=0}^{\infty} \mathbb{P}[T_{n+1} \in B_{1}, \dots, \sum_{j=1}^{k} T_{n+j} \in B_{k}] \times \mathbb{P}[A \cap \{\tau = n\}]$$

$$= \sum_{n=0}^{\infty} \mathbb{P}[T_{1} \in B_{1}, \dots, \sum_{j=1}^{k} T_{j} \in B_{k}] \times \mathbb{P}[A \cap \{\tau = n\}]$$

$$= \mathbb{P}[T_{1} \in B_{1}, \dots, \sum_{j=1}^{k} T_{j} \in B_{k}] \times \mathbb{P}[A \cap \{\tau = n\}]$$

$$= \mathbb{P}[S_{1} \in B_{1}, \dots, S_{k} \in B_{k}] \times \mathbb{P}[A]. \quad (1)$$

For $A = \Omega$ this yields that $(\widetilde{S}_k)_{k \in \mathbb{N}}$ is equal in distribution to $(\widetilde{S}_k)_{k \in \mathbb{N}}$. Using this, we get for $A \in \mathcal{F}_{\tau}$ again arbitrary

$$\mathbb{P}[\widetilde{S}_1 \in B_1, \dots, \widetilde{S}_k \in B_k, A] = \mathbb{P}[S_1 \in B_1, \dots, S_k \in B_k] \times \mathbb{P}[A]$$
$$= \mathbb{P}[\widetilde{S}_1 \in B_1, \dots, \widetilde{S}_k \in B_k] \times \mathbb{P}[A],$$
(2)

which shows that $(\widetilde{S}_k)_{k\in\mathbb{N}}$ and \mathcal{F}_{τ} are independent.

b) Since $T_1 > 0$ P-a.s., it follows that on a set of full probability, N is a counting process starting at 0 and increasing by jumps of size 1. In particular, we have

$$S_k = \inf\{t \ge 0 \mid N_t = k\} \quad \mathbb{P}\text{-a.s.}, \quad k \in \mathbb{N}, \tag{3}$$

and $N_{S_k} = k \mathbb{P}$ -a.s..

Using these properties, it follows immediately that on a set of full probability, $N^{(\tau)}$ is a counting process starting at 0 and increasing by jumps of size 1, too. Denote by $(S_k^{(\tau)})_{k\in\mathbb{N}}$ the sequence of successive jump times of $N^{(\tau)}$. Using the notation from part a), it follows immediately from the definition of $N^{(\tau)}$ and the above that $S_k^{(\tau)} = \sum_{j=1}^k T_{\tau+k} = \tilde{S}_k \mathbb{P}$ -a.s. for all $k \in \mathbb{N}$. Set $S_0^{(\tau)} := 0$ and $T_k^{(\tau)} := S_k^{(\tau)} - S_{k-1}^{(\tau)}$, $k \in \mathbb{N}$. Then it follows from part a) that $(T_k^{(\tau)})_{k\in\mathbb{N}}$ is equal in distribution to $(T_k)_{k\in\mathbb{N}}$ and independent from \mathcal{F}_{τ} . Since a renewal process is characterised by its interarrival times, $\tilde{N}^{(\tau)}$ is independent from \mathcal{F}_{τ} .

Solution 6.4

a) Set $e_y(t) := \mathbb{P}[E_t \leq y]$. Then we have $e_y(t) = 1 - Z_{(0,y)}(t)$. Moreover, it follows from the lecture that e_y satisfies the renewal equation

$$e_y(t) = F(t+y) - F(t) + \int_0^t e_y(t-s) \,\mathrm{d}F(s), \quad t \ge 0.$$
(4)

Using this, we get

$$Z_{(0,y)}(t) = 1 - e_y(t) = 1 + F(t) - F(t+y) + \int_0^t (1 - e_y(t-s)) \,\mathrm{d}F(s) - F(t)$$

= 1 - F(t+y) + $\int_0^t Z_{(0,y)}(t-s) \,\mathrm{d}F(s), \quad t \ge 0.$ (5)

b) We have for $x, y \ge 0$ and $t \ge x$

$$\{A_t \ge x, E_t > y\} = \{S_{N_t} \le t - x, S_{N_t+1} > t + y\} = \{N_t = N_{t-x}, S_{N_t+1} > t + y\} = \{N_t = N_{t-x}, S_{N_{t-x}+1} > t + y\} = \{S_{N_{t-x}+1} > (t - x) + x + y\} = \{E_{t-x} > x + y\}.$$
(6)

This together with the definition of $Z_{(x,y)}$ implies the claim.

c) For $x \ge 0$ define $h_x(t) := (1 - F(t+x))\mathbb{1}_{\{t\ge 0\}}$. Then $h \ge 0$ is decreasing and satisfies

$$\int_0^\infty h_x(t) dt = \int_0^\infty (1 - F(t+x)) dt \le \int_0^\infty (1 - F(t)) dt$$
$$= \int_0^\infty \mathbb{P}[S_1 > t] dt = \mathbb{E}[S_1] = \mu < \infty.$$
(7)

Hence h_x is directly Riemann integrable as shown in the lecture.

Putting the results of part a) and b) together with Smith's key renewal theorem, we get

$$\lim_{t \to \infty} Z_{(x,y)}(t) = \lim_{t \to \infty} Z_{(0,x+y)}(t-x) = \lim_{t \to \infty} Z_{(0,x+y)}(t)$$
$$= \frac{1}{\mu} \int_0^\infty h_{x+y}(u) \, \mathrm{d}u = \frac{1}{\mu} \int_{x+y}^\infty (1-F(u)) \, \mathrm{d}u. \tag{8}$$

For $x, y \ge 0$ set $G_{\infty}(x, y) := \frac{1}{\mu} \int_{x+y}^{\infty} (1 - F(u)) du$. Note that

$$G_{\infty}(0,0) = \frac{1}{\mu} \int_0^\infty (1 - F(u)) \,\mathrm{d}u = \frac{\mu}{\mu} = 1.$$
(9)

Moreover, for $x, y \in \mathbb{R}$ define the function \overline{G}_{∞} by

$$\overline{G}_{\infty}(x,y) := \begin{cases} G_{\infty}(-x,-y) & \text{if } x, y \leq 0, \\ G_{\infty}(-x,0) & \text{if } x \leq 0, y > 0, \\ G_{\infty}(0,-y) & \text{if } x > 0, y \leq 0, \\ 1 & \text{if } x, y > 0. \end{cases}$$
(10)

It follows directly from the definition of G that \overline{G}_{∞} is [0, 1]-valued and continuous (and a fortiori right-continuous). In addition, it is not difficult to check that for $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ with $x_1 < x_2$ and $y_1 < y_2$ we have

$$\overline{G}_{\infty}(x_2, y_2) - \overline{G}_{\infty}(x_1, y_2) - \overline{G}_{\infty}(x_2, y_1) + \overline{G}_{\infty}(x_1, y_1) \ge 0.$$
(11)

Moreover, we have $\overline{G}_{\infty}(0,0) = 1$ and $\lim_{(x,y)\to(-\infty,-\infty)} \overline{G}_{\infty}(x,y) = 0$.

In conclusion, \overline{G}_{∞} is the distribution function of a two dimensional random vector supported on $(-\infty, 0]^2$. Put differently, there exists a random vector (A_{∞}, E_{∞}) valued in $[0, \infty)^2$ such that \overline{G}_{∞} is the distribution function of $(-A_{\infty}, -E_{\infty})$ and we have

$$G_{\infty}(x,y) = \mathbb{P}[A_{\infty} \ge x, E_{\infty} \ge y], \quad x, y \ge 0.$$
(12)

For $t \geq 0$, denote by \overline{G}_t the distribution function of $(-A_t, -E_t)$ and define the function G_t on $[0, \infty)^2$ by $G_t(x, y) := \mathbb{P}[A_t \geq x, E_t \geq y]$. Note that G_t and \overline{G}_t have the same relationship as G_∞ and \overline{G}_∞ .

We proceed to show that (A_t, E_t) converges in distribution to (A_{∞}, E_{∞}) as $t \to \infty$. This is clearly equivalent to showing that $(-A_t, -E_t)$ converges in distribution to (A_{∞}, E_{∞}) as $t \to \infty$, which in turn by continuity of G_{∞} is equivalent to showing that

$$\lim_{t \to \infty} \overline{G}_t(x, y) = \overline{G}_{\infty}(x, y) \quad \text{for all } (x, y) \in \mathbb{R}^2.$$
(13)

Using the relationship between G_t and \overline{G}_t and \overline{G}_{∞} , respectively, the latter is equivalent to establishing that

$$\lim_{t \to \infty} G_t(x, y) = G_\infty(x, y) \quad \text{for all } x, y \ge 0.$$
(14)

Observe that $Z_{x,y}(t) = G_t(x, y+)$ for all $t, x, y \ge 0$, where $G_t(x, y+) = \lim_{u \downarrow y} G_t(x, u)$. By (8) it follows that

$$\lim_{t \to \infty} G_t(x, y+) = G_\infty(x, y) \quad \text{for all } x, y \ge 0.$$
(15)

Using continuity of G, monotonicity of $G_t(x, y+)$ in y and $\lim_{u \uparrow y} G_t(x, u+) = G_t(x, y)$, it is an easy exercise in analysis to derive (14).

d) A_{∞} and E_{∞} are independent if and only if for all $x, y \ge 0$ we have

$$\mathbb{P}[A_{\infty} \ge x, E_{\infty} \ge y] = \mathbb{P}[A_{\infty} \ge x]\mathbb{P}[E_{\infty} \ge y].$$
(16)

Define the function g by $g(z) = \frac{1}{\mu} \int_{z}^{\infty} (1 - F(u)) du$, $z \ge 0$. By part c) it follows that for all $x, y \ge 0$ we have

$$\mathbb{P}[A_{\infty} \ge x, E_{\infty} \ge y] = G(x, y) = g(x + y).$$
(17)

In particular A_{∞} and E_{∞} are independent if and only if for all $x, y \geq 0$ we have

$$g(x+y) = g(x)g(y).$$
(18)

As g is continuous, this functional equation has the unique solution $g(z) = e^{\alpha z}$, where $\alpha < 0$, since $\lim_{z\to\infty} g(z) = 0$. Moreover, we know that

$$e^{az} = g(z) = \frac{1}{\mu} \int_{z}^{\infty} (1 - F(s)) \,\mathrm{d}s, \quad z \ge 0$$
 (19)

Differentiating both sides yields

$$ae^{az} = -\frac{1}{\mu}(1 - F(z)), \quad z \ge 0.$$
 (20)

Hence, we have $F(z) = 1 + \mu \alpha e^{\alpha z}$. Plugging in z = 0 shows that $\alpha \ge -1/\mu$. Hence there exists $\lambda \in (0, 1/\mu]$ such that

$$F(t) = (1 - \lambda \mu e^{-\lambda t}) \mathbb{1}_{\{t \ge 0\}} = (1 - \lambda \mu) \times \mathbb{1}_{\{t \ge 0\}} + \lambda \mu (1 - e^{-\lambda t}) \mathbb{1}_{\{t \ge 0\}}, \quad t \ge 0.$$
(21)

In conclusion, A_{∞} and E_{∞} are independent if and only if F is the *mixture* of a Diracdistribution at 0 and an exponential distribution with parameter $\lambda \in (0, 1/\mu]$ with weights $(1 - \lambda \mu)$ and $\lambda \mu$, respectively.

Remark: For $\lambda = 1/\mu$, N is a Poisson process with parameter $1/\mu$.